transposon

简明释义

[trænsˈpəʊsɒn][trænsˈpoʊzɒn]

n. 转位子

英英释义

A transposon is a DNA sequence that can change its position within the genome, potentially creating or reversing mutations and altering the cell's genetic identity and genome size.

转座子是一种DNA序列,可以在基因组内改变其位置,可能会产生或逆转突变,并改变细胞的遗传特征和基因组大小。

单词用法

dna transposon

DNA 转座子

retrotransposon

逆转座子

transposon insertion

转座子插入

transposon-mediated gene transfer

转座子介导的基因转移

transposon activity

转座子活性

transposon element

转座子元素

mobile genetic element

移动遗传元件

transposon family

转座子家族

同义词

jumping gene

跳跃基因

Transposons, also known as jumping genes, can move within the genome.

转座子,也称为跳跃基因,可以在基因组内移动。

mobile genetic element

移动遗传元件

Mobile genetic elements play a significant role in genetic diversity.

移动遗传元件在遗传多样性中发挥重要作用。

反义词

stability

稳定性

The stability of the genome is crucial for maintaining proper function.

基因组的稳定性对于维持正常功能至关重要。

fixed element

固定元素

Fixed elements in the DNA sequence can provide a reliable framework for genetic studies.

DNA序列中的固定元素可以为遗传研究提供可靠的框架。

例句

1.Transposon tagging is an effective method for plant gene cloning and isolation.

转座子标签法是克隆与分离植物基因的一项十分有效的方法。

2.The web site provides full public access to the data generated from functional analysis of the yeast genome in Yale genome analysis Center, using a novel transposon-tagging approach.

网站提供耶鲁大学基因组分析中心通过转座子标签技术进行酵母基因组功能研究获得到数据。

3.Retrotransponson is one of the major parts of rice transposon.

逆转座子是水稻转座因子的一个主要组成部分。

4.Dispersed repetitive sequence is mainly transposable elements which are composed of transposon and retroposon.

散在重复序列主要是可转移因子,可转移因子分为转座子和返座子两种类型。

5.Currently, several approaches have been developed for gene enrichment on a genome-wide scale, such as cDNA library, methylation filtration library, high Cot library and transposon tagging.

目前,在基因组范围内富集基因的方法有cD NA文库、甲基化过滤文库、高Cot值文库、转座子标签富集法等。

6.However the former cloning methods such as map-base cloning or transposon tagging which based on forward genetics can only cloned one or several genes at the same time.

以往的基因克隆方法如图位克隆法、转座子标签法等大都是建立在正向遗传学的基础上,这些方法只适用于一个或少数基因,应该说是零敲碎打的策略。

7.One particular transposon first appeared about a million years ago. And by seeing where these sequences now sit, scientists can get a sense of the size of the breeding population back then.

位置固定的转位子第一次出现是在一百万年前,通过观察现在这些序列的排列顺序,科学家们就可以了解到那个时代的人口数量。

8.One particular transposon first appeared about a million years ago.

一种特别的转位子最早出现在一百万年前。

9.In some plants, transposons contribute to the development of resistance against diseases.

在一些植物中,转座子有助于抵抗疾病的发展。

10.Scientists have found that transposons can be used as tools for gene therapy.

科学家发现转座子可以作为基因治疗的工具。

11.The study of transposons has revealed their role in genetic diversity.

转座子的研究揭示了它们在遗传多样性中的作用。

12.The presence of active transposons can lead to mutations in the genome.

活跃的转座子的存在可能导致基因组中的突变。

13.Researchers are investigating how transposons can influence gene expression.

研究人员正在调查转座子如何影响基因表达。

作文

Transposons, often referred to as "jumping genes," are fascinating elements of genetic material that can change their position within the genome. These sequences of DNA can move from one location to another, which can lead to significant changes in an organism's genetic makeup. Understanding transposons is crucial for various fields such as genetics, molecular biology, and evolutionary studies. In this essay, we will explore the nature of transposon (转座子), their mechanisms of action, and their implications in both health and disease.The discovery of transposons (转座子) dates back to the 1940s when the geneticist Barbara McClintock first observed them in maize. She noticed that certain traits in maize could change from one generation to the next, which she attributed to these mobile genetic elements. Her groundbreaking work not only earned her a Nobel Prize but also opened up new avenues of research in genetics. Since then, scientists have identified many different types of transposons (转座子), each with unique characteristics and functions.There are two primary classes of transposons (转座子): Class I, which are retrotransposons, and Class II, which are DNA transposons. Retrotransposons replicate through an RNA intermediate and insert themselves back into the genome, while DNA transposons move directly from one DNA location to another. Both types play essential roles in genetic diversity, evolution, and adaptation by facilitating the rearrangement of genetic material.One of the most intriguing aspects of transposons (转座子) is their potential impact on gene expression. When a transposon (转座子) inserts itself into or near a gene, it can disrupt the normal function of that gene, leading to mutations. This can have various consequences, from benign changes to severe genetic disorders. For instance, certain diseases, such as hemophilia and some forms of cancer, have been linked to the activity of transposons (转座子). Their ability to induce mutations makes them both a source of genetic variability and a potential threat to genomic stability.Moreover, transposons (转座子) also play a role in evolutionary processes. They contribute to the horizontal gene transfer between species, allowing for the exchange of genetic material that can lead to new traits and adaptations. This process has been particularly evident in bacteria, where transposons (转座子) facilitate the spread of antibiotic resistance genes, posing a significant challenge for public health.In recent years, researchers have begun to harness the power of transposons (转座子) for biotechnological applications. For example, scientists are exploring their use in gene therapy, where transposons (转座子) can be engineered to deliver therapeutic genes to specific locations in the genome. This innovative approach holds promise for treating genetic disorders and enhancing crop resilience in agriculture.In conclusion, transposons (转座子) are remarkable genetic elements that have profound implications for genetics, evolution, and medicine. Their ability to move within the genome can lead to beneficial variations or harmful mutations, highlighting the delicate balance they maintain in biological systems. As research continues to unravel the complexities of transposons (转座子), we gain valuable insights into the mechanisms of genetic change and the potential for innovative applications in science and medicine.

转座子,通常被称为“跳跃基因”,是遗传物质中一种迷人的元素,它们可以在基因组内改变位置。这些DNA序列可以从一个位置移动到另一个位置,这可能导致生物体的遗传组成发生重大变化。理解转座子对于遗传学、分子生物学和进化研究等多个领域至关重要。在这篇文章中,我们将探讨transposon(转座子)的性质、它们的作用机制以及它们在健康和疾病中的影响。转座子的发现可以追溯到20世纪40年代,当时遗传学家巴巴拉·麦克林托克首次在玉米中观察到了它们。她注意到,玉米中的某些性状可以在一代又一代中变化,这归因于这些可移动的遗传元素。她的开创性工作不仅为她赢得了诺贝尔奖,还开启了遗传学研究的新途径。从那时起,科学家们已经识别出许多不同类型的transposons(转座子),每种都有独特的特征和功能。转座子主要有两类:第一类是逆转录转座子,第二类是DNA转座子。逆转录转座子通过RNA中间体复制并重新插入基因组,而DNA转座子则直接从一个DNA位置移动到另一个位置。这两种类型在遗传多样性、进化和适应中发挥着重要作用,因为它们促进了遗传物质的重组。转座子最引人注目的方面之一是它们对基因表达的潜在影响。当一个transposon(转座子)插入到或靠近一个基因时,它可能会破坏该基因的正常功能,从而导致突变。这可能会产生各种后果,从良性的变化到严重的遗传疾病。例如,某些疾病,如血友病和某些类型的癌症,与转座子的活性有关。它们诱导突变的能力使它们既是遗传变异的来源,也是基因组稳定性的潜在威胁。此外,transposons(转座子)在进化过程中也发挥着作用。它们促进物种之间的水平基因转移,使遗传物质的交换能够导致新的性状和适应。这一过程在细菌中特别明显,其中转座子促进抗生素耐药基因的传播,对公共卫生构成了重大挑战。近年来,研究人员开始利用转座子的力量进行生物技术应用。例如,科学家们正在探索它们在基因疗法中的使用,转座子可以被设计用来将治疗基因送到基因组中的特定位置。这种创新方法在治疗遗传疾病和增强农业作物抗逆性方面具有前景。总之,transposons(转座子)是具有深远意义的遗传元素,对于遗传学、进化和医学具有重要意义。它们在基因组内移动的能力可能导致有益的变异或有害的突变,突显了它们在生物系统中维持微妙平衡的重要性。随着研究继续揭示转座子的复杂性,我们获得了对遗传变化机制的宝贵见解,以及在科学和医学中创新应用的潜力。