protein biosynthesis
简明释义
蛋白质的生合成
英英释义
例句
1.The process of protein biosynthesis 蛋白质生物合成 is essential for cell growth and repair.
细胞生长和修复的过程中,蛋白质生物合成 是必不可少的。
2.Scientists study protein biosynthesis 蛋白质生物合成 to understand how cells produce proteins.
科学家研究蛋白质生物合成 以了解细胞如何产生蛋白质。
3.Inhibition of protein biosynthesis 蛋白质生物合成 can lead to cell death.
抑制蛋白质生物合成 可能导致细胞死亡。
4.The ribosome is a key organelle involved in protein biosynthesis 蛋白质生物合成.
核糖体是参与蛋白质生物合成 的关键细胞器。
5.During protein biosynthesis 蛋白质生物合成, mRNA serves as a template for assembling amino acids.
在蛋白质生物合成 过程中,mRNA作为组装氨基酸的模板。
作文
Protein biosynthesis is a fundamental biological process that occurs in all living organisms. It is the mechanism by which cells generate proteins, which are essential for various functions such as catalyzing biochemical reactions, providing structural support, and regulating cellular processes. The process of protein biosynthesis (蛋白质生物合成) can be broadly divided into two main stages: transcription and translation.During transcription, the genetic information encoded in DNA is transcribed into messenger RNA (mRNA). This process takes place in the nucleus of eukaryotic cells. The enzyme RNA polymerase binds to a specific region of the DNA, unwinding the double helix and synthesizing a single strand of mRNA complementary to the DNA template. Once the mRNA strand is formed, it undergoes several modifications, including the addition of a 5' cap and a poly-A tail, before being transported out of the nucleus into the cytoplasm.The second stage of protein biosynthesis (蛋白质生物合成) is translation, where the mRNA is decoded to synthesize a specific protein. This process occurs on ribosomes, which can be found freely floating in the cytoplasm or attached to the endoplasmic reticulum. During translation, the ribosome reads the sequence of codons in the mRNA, each consisting of three nucleotides that correspond to a specific amino acid.Transfer RNA (tRNA) plays a crucial role in translation. Each tRNA molecule carries a specific amino acid and has an anticodon that is complementary to the codon on the mRNA. As the ribosome moves along the mRNA, tRNA molecules bring the appropriate amino acids, which are then linked together by peptide bonds, forming a growing polypeptide chain. This process continues until a stop codon is reached, signaling the end of the protein synthesis.After translation, the newly synthesized protein may undergo further modifications, such as folding, post-translational modifications, and assembly into multi-subunit complexes. These modifications are critical for the protein's functionality and stability. Understanding the intricacies of protein biosynthesis (蛋白质生物合成) is vital for many fields, including genetics, molecular biology, and biotechnology.In recent years, advancements in technology have allowed scientists to explore the mechanisms of protein biosynthesis (蛋白质生物合成) at an unprecedented level. Techniques such as CRISPR gene editing, next-generation sequencing, and high-throughput proteomics have opened new avenues for research and application. For instance, manipulating the pathways involved in protein biosynthesis (蛋白质生物合成) can lead to the development of novel therapeutics, improved agricultural practices, and enhanced industrial processes.Moreover, studying the errors that occur during protein biosynthesis (蛋白质生物合成) can shed light on various diseases. Misfolded proteins or abnormal protein aggregates are implicated in conditions such as Alzheimer’s disease, Parkinson’s disease, and certain cancers. By understanding how these errors arise, researchers can develop strategies to prevent or treat these diseases.In conclusion, protein biosynthesis (蛋白质生物合成) is a complex yet fascinating process that is essential for life. From the transcription of DNA to the translation of mRNA into functional proteins, each step is meticulously regulated and crucial for the proper functioning of cells. As we continue to unravel the mysteries of protein biosynthesis (蛋白质生物合成), we open doors to new scientific discoveries and potential applications that can benefit humanity.
蛋白质生物合成是所有生物体中发生的基本生物过程。它是细胞生成蛋白质的机制,而蛋白质对于催化生化反应、提供结构支持和调节细胞过程等各种功能都是必不可少的。蛋白质生物合成(protein biosynthesis)过程大致可以分为两个主要阶段:转录和翻译。在转录过程中,DNA中编码的遗传信息被转录成信使RNA(mRNA)。这一过程发生在真核细胞的细胞核内。酶RNA聚合酶结合到DNA的特定区域,解开双螺旋并合成与DNA模板互补的单链mRNA。mRNA链形成后,会经过几种修饰,包括添加5'帽和聚A尾,然后被转运出细胞核进入细胞质。蛋白质生物合成(protein biosynthesis)的第二个阶段是翻译,在这个阶段,mRNA被解码以合成特定的蛋白质。这个过程发生在核糖体上,核糖体可以在细胞质中自由漂浮或附着在内质网。翻译过程中,核糖体读取mRNA中的密码子序列,每个密码子由三个核苷酸组成,对应于特定的氨基酸。转移RNA(tRNA)在翻译中起着关键作用。每个tRNA分子携带特定的氨基酸,并具有与mRNA上的密码子互补的反密码子。当核糖体沿着mRNA移动时,tRNA分子将适当的氨基酸带来,这些氨基酸通过肽键连接在一起,形成一个不断增长的多肽链。这个过程持续进行,直到达到一个终止密码子,信号结束蛋白质合成。翻译后,新合成的蛋白质可能会经历进一步的修饰,比如折叠、翻译后修饰和组装成多亚基复合物。这些修饰对蛋白质的功能性和稳定性至关重要。理解蛋白质生物合成(protein biosynthesis)的复杂性对于许多领域至关重要,包括遗传学、分子生物学和生物技术。近年来,技术的进步使科学家能够以前所未有的水平探索蛋白质生物合成(protein biosynthesis)的机制。CRISPR基因编辑、下一代测序和高通量蛋白组学等技术为研究和应用开辟了新的途径。例如,操纵涉及蛋白质生物合成(protein biosynthesis)的途径可以导致新型治疗药物、改进农业实践和增强工业过程的发展。此外,研究蛋白质生物合成(protein biosynthesis)过程中发生的错误可以揭示各种疾病。错误折叠的蛋白质或异常的蛋白质聚集与阿尔茨海默病、帕金森病和某些癌症等疾病有关。通过理解这些错误是如何产生的,研究人员可以制定预防或治疗这些疾病的策略。总之,蛋白质生物合成(protein biosynthesis)是一个复杂而迷人的过程,对于生命至关重要。从DNA的转录到mRNA翻译成功能性蛋白质,每一步都经过精心调控,对细胞的正常功能至关重要。随着我们继续揭开蛋白质生物合成(protein biosynthesis)的神秘面纱,我们为新的科学发现和潜在的应用打开了大门,这些发现和应用可以造福人类。
相关单词