polymer homologue
简明释义
同系聚合物
英英释义
例句
1.The polymer homologue (聚合物同源物) used in this experiment showed remarkable thermal stability.
本实验中使用的聚合物同源物显示出显著的热稳定性。
2.The research focused on the synthesis of a new polymer homologue (聚合物同源物) that could enhance the material's tensile strength.
该研究集中在合成一种新的聚合物同源物,(聚合物同源物)能够增强材料的抗拉强度。
3.We discovered that the polymer homologue (聚合物同源物) derived from renewable resources had a lower environmental impact.
我们发现从可再生资源衍生的聚合物同源物具有较低的环境影响。
4.The team developed a method to analyze the molecular weight distribution of the polymer homologues (聚合物同源物) produced.
该团队开发了一种分析所生产的聚合物同源物的分子量分布的方法。
5.By comparing the properties of different polymer homologues (聚合物同源物), we can identify the most suitable material for our application.
通过比较不同的聚合物同源物,(聚合物同源物)我们可以识别出最适合我们应用的材料。
作文
The study of polymers is an integral part of materials science, and understanding various polymer structures can lead to significant advancements in technology. One important concept in this field is the idea of a polymer homologue, which refers to a series of related polymers that differ from each other by a repeating unit or a specific structural feature. This concept is crucial for scientists and engineers who are involved in the design and synthesis of new materials. By studying polymer homologues, researchers can gain insights into how variations in molecular structure impact the physical and chemical properties of the material.For instance, when examining the properties of polyethylene, one might encounter various polymer homologues such as low-density polyethylene (LDPE) and high-density polyethylene (HDPE). These materials have identical repeating units but differ in their branching and crystallinity, leading to distinct mechanical and thermal properties. LDPE is characterized by its flexibility and low density, making it suitable for applications like plastic bags, while HDPE is more rigid and dense, ideal for products like bottles and piping. Understanding these differences through the lens of polymer homologues allows manufacturers to select the appropriate polymer for specific applications based on desired characteristics.Moreover, the study of polymer homologues extends beyond just polyethylene. It encompasses a wide range of synthetic and natural polymers. For example, in the case of proteins, different amino acid sequences can be considered as polymer homologues, where the sequence and composition of amino acids determine the protein's function and behavior in biological systems. This analogy highlights the versatility of the concept across disciplines, bridging the gap between chemistry and biology.In addition to practical applications, the concept of polymer homologues plays a role in theoretical research. Scientists use the relationships between different polymer homologues to model complex behaviors in polymer systems, such as phase transitions, viscosity, and elasticity. By understanding how similar polymers behave under different conditions, researchers can predict the performance of new materials before they are synthesized. This predictive capability is essential for advancing fields such as nanotechnology and drug delivery, where precise control over material properties is critical.Furthermore, the exploration of polymer homologues also contributes to sustainability efforts. By modifying existing polymers or designing new polymer homologues with enhanced biodegradability or recyclability, scientists aim to reduce the environmental impact of plastic waste. This aspect of research is increasingly important as society seeks to address the challenges posed by plastic pollution.In conclusion, the concept of a polymer homologue serves as a foundational element in the study of polymers, providing valuable insights into material properties and functionalities. From industrial applications to theoretical research, understanding polymer homologues allows scientists and engineers to innovate and create materials that meet the demands of modern society while considering environmental sustainability. As our knowledge of polymers continues to grow, so too will the importance of recognizing and utilizing polymer homologues in various scientific and engineering disciplines.
聚合物的研究是材料科学的重要组成部分,理解各种聚合物结构可以推动技术的重大进步。在这个领域,一个重要的概念是聚合物同系物,它指的是一系列相关的聚合物,这些聚合物通过重复单元或特定的结构特征彼此不同。这个概念对从事新材料设计和合成的科学家和工程师至关重要。通过研究聚合物同系物,研究人员可以深入了解分子结构的变化如何影响材料的物理和化学性质。例如,在检查聚乙烯的性质时,人们可能会遇到各种聚合物同系物,如低密度聚乙烯(LDPE)和高密度聚乙烯(HDPE)。这些材料具有相同的重复单元,但在支链和结晶度上有所不同,从而导致机械和热性质的显著差异。LDPE以其柔韧性和低密度为特征,适用于塑料袋等应用,而HDPE则更刚性和密度,适合用于瓶子和管道等产品。通过聚合物同系物的视角理解这些差异,使制造商能够根据所需特性选择适合特定应用的聚合物。此外,聚合物同系物的研究不仅限于聚乙烯。它涵盖了广泛的合成聚合物和天然聚合物。例如,在蛋白质的情况下,不同的氨基酸序列可以被视为聚合物同系物,其中氨基酸的序列和组成决定了蛋白质在生物系统中的功能和行为。这种类比突显了该概念在各个学科中的多样性,架起了化学与生物之间的桥梁。除了实际应用之外,聚合物同系物的概念还在理论研究中发挥作用。科学家利用不同聚合物同系物之间的关系来模拟聚合物系统中的复杂行为,如相变、粘度和弹性。通过了解相似聚合物在不同条件下的行为,研究人员可以在合成新材料之前预测其性能。这种预测能力对于推进纳米技术和药物传递等领域至关重要,在这些领域,对材料性能的精确控制至关重要。此外,探索聚合物同系物也有助于可持续发展努力。通过修改现有聚合物或设计具有增强生物降解性或可回收性的新的聚合物同系物,科学家们旨在减少塑料废物对环境的影响。这一研究方向在当今社会寻求应对塑料污染挑战时越来越重要。总之,聚合物同系物的概念作为聚合物研究的基础元素,为材料的性质和功能提供了宝贵的见解。从工业应用到理论研究,理解聚合物同系物使科学家和工程师能够创新并创造满足现代社会需求的材料,同时考虑环境可持续性。随着我们对聚合物知识的不断增长,认识和利用聚合物同系物在各个科学和工程学科中的重要性也将不断提升。
相关单词