ordination number

简明释义

原子序

英英释义

The ordination number is a numerical representation of the position of an element in a sequence, particularly in the context of set theory or ordinal numbers.

序数是元素在序列中的位置的数值表示,特别是在集合论或序数的上下文中。

例句

1.The ordination number 序数 of a molecule can affect its stability and reactivity.

分子的ordination number 序数 可以影响其稳定性和反应性。

2.In chemistry, the ordination number 配位数 indicates how many atoms or ions surround a central atom.

在化学中,ordination number 配位数 表示围绕中心原子的原子或离子的数量。

3.The scientist noted that the ordination number 序数 of the species in the study was critical for understanding their ecological relationships.

科学家指出,研究中物种的ordination number 序数 对理解其生态关系至关重要。

4.The ordination number 序数 helps determine the type of bonding present in a complex.

ordination number 序数 有助于确定复合物中存在的键类型。

5.When studying coordination compounds, the ordination number 配位数 is essential for predicting the geometry of the compound.

在研究配位化合物时,ordination number 配位数 对于预测化合物的几何形状至关重要。

作文

In the realm of mathematics, particularly in group theory, the concept of an ordination number plays a crucial role in understanding the structure and behavior of groups. The ordination number can be defined as a measure that indicates the arrangement or sequence of elements within a particular set or group. This concept is not only relevant in pure mathematics but also finds applications in various fields such as chemistry, computer science, and even social sciences. To grasp the significance of the ordination number, one must first understand its foundational principles. In group theory, groups are composed of elements that follow specific operations. The ordination number helps in categorizing these elements based on their properties and relationships. For instance, in a finite group, the ordination number can indicate how many times an element must be combined with itself to return to the identity element of the group. This concept is akin to finding the order of an element, which is a fundamental aspect of group theory.Moreover, the ordination number is not limited to abstract mathematical concepts; it has real-world implications as well. In chemistry, for example, the ordination number refers to the number of bonds formed by a central atom in a molecule. This is critical in determining the molecular structure and the reactivity of compounds. Understanding the ordination number in this context allows chemists to predict how different substances will interact with one another, which is essential for developing new materials and pharmaceuticals.In computer science, the ordination number can be related to algorithms and data structures. When organizing data, the ordination number can represent the hierarchy or priority of elements within a dataset. This is particularly important in database management and information retrieval systems, where efficient organization of data can significantly impact performance and usability.Furthermore, in social sciences, the ordination number can be utilized to analyze social networks. By examining the ordination number of individuals within a network, researchers can identify influential figures and understand the dynamics of social interactions. This application illustrates the versatility of the ordination number across different domains, showcasing its importance beyond mere mathematical definitions.In conclusion, the ordination number is a multifaceted concept that extends far beyond its basic mathematical definition. It serves as a vital tool in various disciplines, aiding in the understanding of complex structures and relationships. Whether in mathematics, chemistry, computer science, or social sciences, the ordination number provides insights that enhance our comprehension of the world around us. As we continue to explore and innovate, the relevance of the ordination number will undoubtedly persist, shaping our approach to problem-solving and discovery across multiple fields.

在数学领域,特别是在群论中,“ordination number”的概念在理解群体的结构和行为方面发挥着至关重要的作用。“ordination number”可以定义为一种度量,指示特定集合或群体内元素的排列或顺序。这个概念不仅在纯数学中相关,还在化学、计算机科学甚至社会科学等多个领域中找到了应用。要理解“ordination number”的重要性,首先必须了解其基础原则。在群论中,群由遵循特定运算的元素组成。“ordination number”有助于根据元素的属性和关系对这些元素进行分类。例如,在有限群中,“ordination number”可以指示一个元素必须与自身组合多少次才能返回到群的单位元素。这一概念类似于寻找元素的阶,这是群论的一个基本方面。此外,“ordination number”并不限于抽象的数学概念;它也具有现实世界的意义。例如,在化学中,“ordination number”指的是中心原子在分子中形成的键的数量。这对于确定分子的结构和化合物的反应性至关重要。了解这一背景下的“ordination number”使化学家能够预测不同物质之间的相互作用,这对于开发新材料和药物至关重要。在计算机科学中,“ordination number”可以与算法和数据结构相关联。在组织数据时,“ordination number”可以表示数据集中元素的层次或优先级。这在数据库管理和信息检索系统中特别重要,因为高效的数据组织可以显著影响性能和可用性。此外,在社会科学中,“ordination number”可以用于分析社交网络。通过检查网络中个体的“ordination number”,研究人员可以识别影响力人物并理解社会互动的动态。这一应用展示了“ordination number”在不同领域的多功能性,展示了其超越单纯数学定义的重要性。总之,“ordination number”是一个多面向的概念,远远超出了其基本的数学定义。它作为多个学科中的重要工具,有助于理解复杂的结构和关系。无论是在数学、化学、计算机科学还是社会科学中,“ordination number”都提供了增强我们对周围世界理解的见解。随着我们继续探索和创新,“ordination number”的相关性无疑会持续存在,塑造我们在多个领域解决问题和发现的方式。