nuclear adiabatic demagnetization

简明释义

核绝热去磁

英英释义

Nuclear adiabatic demagnetization is a process used to cool materials to very low temperatures by reducing the magnetic field applied to a system of nuclear spins in such a way that no heat is exchanged with the environment.

核绝热去磁是一种用于将材料冷却到非常低温的过程,通过减少施加在核自旋系统上的磁场,以一种不与环境交换热量的方式进行。

例句

1.By using nuclear adiabatic demagnetization 核自热去磁, scientists were able to reach temperatures close to absolute zero.

通过使用核自热去磁 nuclear adiabatic demagnetization,科学家们能够达到接近绝对零度的温度。

2.The experiment demonstrated how nuclear adiabatic demagnetization 核自热去磁 can enhance the performance of superconductors.

实验展示了核自热去磁 nuclear adiabatic demagnetization 如何增强超导体的性能。

3.The principle of nuclear adiabatic demagnetization 核自热去磁 can be applied in cryogenics to cool materials effectively.

核自热去磁 nuclear adiabatic demagnetization 的原理可以应用于低温技术,以有效冷却材料。

4.In quantum computing, nuclear adiabatic demagnetization 核自热去磁 is essential for maintaining qubit coherence.

在量子计算中,核自热去磁 nuclear adiabatic demagnetization 对于维持量子比特的相干性至关重要。

5.The research team utilized nuclear adiabatic demagnetization 核自热去磁 to achieve ultra-low temperatures for their experiments.

研究团队利用核自热去磁 nuclear adiabatic demagnetization 来实现实验所需的超低温。

作文

In the realm of condensed matter physics and cryogenics, one intriguing phenomenon stands out: nuclear adiabatic demagnetization. This process is pivotal in achieving extremely low temperatures, which are essential for various scientific experiments and applications. To understand this concept better, we must delve into the principles behind it and its significance in modern physics.At its core, nuclear adiabatic demagnetization involves the manipulation of magnetic dipoles within a material, typically a paramagnetic salt. The process begins by cooling the material to a low temperature using conventional refrigeration techniques. Once the material reaches thermal equilibrium at this low temperature, an external magnetic field is applied. This magnetic field aligns the nuclear spins of the atoms in the material, effectively polarizing them.The next step is crucial: the magnetic field is then slowly reduced while ensuring that the system remains in thermal equilibrium. This is the adiabatic part of the process. According to the principles of thermodynamics, if a system is allowed to adjust its energy without exchanging heat with its surroundings, it can undergo changes in its internal energy without any heat transfer. As the magnetic field decreases, the spins of the nuclei become disordered, leading to a drop in temperature. This cooling effect is a direct result of the magnetic entropy change associated with the alignment and subsequent disordering of the nuclear spins.One of the most fascinating aspects of nuclear adiabatic demagnetization is its ability to achieve temperatures close to absolute zero, making it an invaluable tool in the field of cryogenics. Researchers have utilized this technique to explore the quantum properties of materials, study superconductivity, and investigate the behavior of electrons at low temperatures. The ability to reach such low temperatures allows scientists to observe phenomena that would otherwise be masked by thermal noise at higher temperatures.Moreover, nuclear adiabatic demagnetization has practical applications beyond fundamental research. It plays a significant role in the development of sensitive detectors and instruments used in astrophysics and particle physics. For instance, bolometers, which measure the power of incident electromagnetic radiation, often rely on cryogenic techniques, including nuclear adiabatic demagnetization, to enhance their sensitivity and accuracy.In conclusion, nuclear adiabatic demagnetization is a remarkable process that exemplifies the interplay between magnetism and thermodynamics. By understanding and harnessing this phenomenon, scientists can achieve unprecedented low temperatures, paving the way for groundbreaking discoveries in physics and technology. As we continue to explore the universe at these extreme conditions, the significance of nuclear adiabatic demagnetization will undoubtedly grow, offering new insights into the fundamental nature of matter and energy.

在凝聚态物理学和低温物理学领域,有一个引人入胜的现象:核绝热去磁化。这一过程对于实现极低温度至关重要,这些低温对各种科学实验和应用是必不可少的。为了更好地理解这一概念,我们必须深入探讨其背后的原理及其在现代物理学中的重要性。从本质上讲,核绝热去磁化涉及对材料中磁偶极子的操控,通常是顺磁盐。该过程首先通过常规制冷技术将材料冷却到低温。一旦材料在这个低温下达到热平衡,就会施加外部磁场。这个磁场使材料中原子的核自旋排列,从而有效地极化它们。接下来的步骤至关重要:然后,磁场缓慢降低,同时确保系统保持热平衡。这就是过程的绝热部分。根据热力学原理,如果一个系统被允许在不与环境交换热量的情况下调整其能量,它可以在没有任何热传递的情况下经历内部能量的变化。当磁场减小时,核自旋变得无序,导致温度下降。这种冷却效应是核自旋的排列和随后的无序化所带来的磁熵变化的直接结果。核绝热去磁化最迷人的方面之一是它能够实现接近绝对零度的温度,使其成为低温物理学领域中一项宝贵的工具。研究人员利用这一技术探索材料的量子特性,研究超导性,并调查低温下电子的行为。能够达到如此低的温度使科学家能够观察到在较高温度下因热噪声而掩盖的现象。此外,核绝热去磁化在基础研究之外还有实际应用。它在天体物理学和粒子物理学中用于开发灵敏的探测器和仪器方面发挥着重要作用。例如,测量入射电磁辐射功率的热计通常依赖于包括核绝热去磁化在内的低温技术,以增强其灵敏度和准确性。总之,核绝热去磁化是一个非凡的过程,体现了磁性与热力学之间的相互作用。通过理解和利用这一现象,科学家们可以实现前所未有的低温,为物理学和技术的突破性发现铺平道路。随着我们继续在这些极端条件下探索宇宙,核绝热去磁化的重要性无疑将不断增长,为物质和能量的基本性质提供新的见解。

相关单词

nuclear

nuclear详解:怎么读、什么意思、用法

adiabatic

adiabatic详解:怎么读、什么意思、用法

demagnetization

demagnetization详解:怎么读、什么意思、用法