nonradioactive tracer
简明释义
非放射性指示剂
英英释义
例句
1.In environmental studies, scientists often use a nonradioactive tracer 非放射性示踪剂 to track the movement of pollutants in water systems.
在环境研究中,科学家们常常使用非放射性示踪剂 nonradioactive tracer 来追踪水系统中污染物的运动。
2.Using a nonradioactive tracer 非放射性示踪剂 in geological studies helps to understand groundwater movement without harmful effects.
在地质研究中使用非放射性示踪剂 nonradioactive tracer 有助于了解地下水的运动,而不会产生有害影响。
3.The nonradioactive tracer 非放射性示踪剂 allowed for safe tracking of chemical reactions in the lab without radiation exposure.
该非放射性示踪剂 nonradioactive tracer 使得在实验室中安全跟踪化学反应成为可能,而无需接触辐射。
4.During the experiment, the team added a nonradioactive tracer 非放射性示踪剂 to monitor the absorption rates of nutrients by plants.
在实验过程中,团队添加了非放射性示踪剂 nonradioactive tracer 以监测植物对营养物质的吸收速率。
5.The researchers employed a nonradioactive tracer 非放射性示踪剂 to investigate the flow of blood in the human body during their experiments.
研究人员在实验中采用了非放射性示踪剂 nonradioactive tracer 来研究人体内血液的流动。
作文
In the field of science, particularly in biology and chemistry, the term nonradioactive tracer refers to a substance that is used to track the movement of materials within a system without emitting radiation. This is particularly important in studies where exposure to radiation could pose health risks to living organisms or alter the behavior of the substances being studied. For instance, researchers often use nonradioactive tracers to monitor metabolic processes in plants and animals. By introducing these tracers into a biological system, scientists can gain insights into how nutrients are absorbed and utilized. One common example of a nonradioactive tracer is stable isotopes of carbon or nitrogen. These isotopes can be incorporated into organic compounds and traced through various biochemical pathways. This method allows researchers to map out complex interactions and understand the flow of energy and matter in ecosystems.The use of nonradioactive tracers extends beyond biology; it is also prevalent in environmental science. For example, hydrologists may use these tracers to study water movement in aquifers or the dispersion of pollutants in groundwater. By injecting a nonradioactive tracer into a water source, they can track its path and determine how contaminants spread over time. This information is crucial for developing effective strategies for water management and pollution control.Moreover, nonradioactive tracers play a significant role in medical imaging and diagnostics. In certain imaging techniques, such as magnetic resonance imaging (MRI) or computed tomography (CT), nonradioactive substances are used to enhance contrast and improve the clarity of images. This allows healthcare professionals to obtain detailed views of internal organs and tissues without the risks associated with radioactive materials.The advantages of using nonradioactive tracers are manifold. Firstly, they eliminate the health risks associated with radiation exposure, making them a safer option for both researchers and subjects. Secondly, they provide a means to conduct experiments in real-time, allowing for immediate observation of dynamic processes. Finally, the versatility of nonradioactive tracers means they can be applied across various disciplines, from ecological studies to clinical research.In conclusion, the concept of nonradioactive tracer is essential in modern scientific research. Its ability to facilitate the tracking of processes without the dangers of radiation makes it a valuable tool in understanding complex systems. As technology advances, the methods and applications of nonradioactive tracers will continue to evolve, opening new avenues for discovery and innovation in multiple fields. Researchers must remain aware of the importance of these tracers in their work, as they contribute significantly to our understanding of the natural world and human health.
在科学领域,特别是在生物学和化学中,术语非放射性示踪剂指的是一种用于追踪材料在系统内移动的物质,而不发出辐射。这在研究中尤其重要,因为暴露于辐射可能对生物体健康构成风险或改变被研究物质的行为。例如,研究人员通常使用非放射性示踪剂来监测植物和动物的代谢过程。通过将这些示踪剂引入生物系统,科学家可以深入了解营养物质是如何被吸收和利用的。一个常见的非放射性示踪剂的例子是碳或氮的稳定同位素。这些同位素可以被纳入有机化合物中,并通过各种生化途径进行追踪。这种方法使研究人员能够绘制复杂的相互作用图,并理解生态系统中能量和物质的流动。非放射性示踪剂的使用超越了生物学;它在环境科学中也很普遍。例如,水文学家可能使用这些示踪剂来研究含水层中的水流动或污染物在地下水中的扩散。通过向水源中注入非放射性示踪剂,他们可以追踪其路径并确定污染物随时间的传播。这些信息对于制定有效的水管理和污染控制策略至关重要。此外,非放射性示踪剂在医学成像和诊断中也发挥着重要作用。在某些成像技术中,如磁共振成像(MRI)或计算机断层扫描(CT),使用非放射性物质来增强对比度并改善图像清晰度。这使得医疗专业人员能够获得内部器官和组织的详细视图,而无需与放射性材料相关的风险。使用非放射性示踪剂的优势是多方面的。首先,它们消除了与辐射暴露相关的健康风险,使其成为研究人员和受试者更安全的选择。其次,它们提供了一种实时进行实验的手段,允许立即观察动态过程。最后,非放射性示踪剂的多功能性意味着它们可以应用于各个学科,从生态研究到临床研究。总之,非放射性示踪剂的概念在现代科学研究中至关重要。它能够在没有辐射危险的情况下促进过程追踪,使其成为理解复杂系统的宝贵工具。随着技术的进步,非放射性示踪剂的方法和应用将继续演变,为多个领域的发现和创新开辟新途径。研究人员必须意识到这些示踪剂在他们工作中的重要性,因为它们对我们理解自然世界和人类健康做出了重大贡献。
相关单词