ligand
简明释义
n. (生化)配位体,配基
英英释义
单词用法
受体-配体相互作用 | |
配体-受体复合物 | |
配体亲和力 | |
合成配体 | |
高亲和力配体 | |
低亲和力配体 | |
竞争性配体 | |
特异性配体 |
同义词
反义词
受体 | The receptor binds to the ligand to initiate a cellular response. | 受体与配体结合以启动细胞反应。 | |
抑制剂 | An inhibitor can prevent the ligand from activating the receptor. | 抑制剂可以阻止配体激活受体。 |
例句
1.A proliferation-induced ligand(APRIL)is a recently found member of tumor necrosis factor (TNF)superfamily.
增殖诱导配体(APRIL)是近年来发现的肿瘤坏死因子(TNF)超家族成员。
2.On the contrary, TM4 is assumed to playa key role in the ligand-binding for the high variability.
相反TM4可变性很高,所以我们推测TM4可能在配基结合中起关键的作用。
3.The dual-ligand formulations are therefore likely to be heterogeneous in the actual number of ligands per liposome.
在每个脂质体实际的配体数目中,双倍配体模式可能是不均一的。
4.Alcohol can interfere with the signaling mechanisms induced by this LPS ligand at multiple levels.
酒精会通过脂多糖在多个层面干扰信号机制。
5.It can hydrolysis glucuronide glycoside bond, releasing the glucuronic acid and ligand.
它能够特异性水解葡萄糖醛酸苷糖甙键,释放出葡萄糖醛酸和配基。
6.Copper speciation in water and copper adsorption quantity on fish gill surface were calculated by a Biotic Ligand Model.
用生物配位模型计算了铜在水相的形态分布和在鱼鳃表面的吸附量。
7.The reason why water glass can enhance the cathodic polarization is due to the formation of mixed ligand complexes.
水玻璃增大镀液的阴极极化作用是由于锌能与硅结合成混合配体络合物的缘故。
8.The binding of the ligand to the receptor is crucial for cellular communication.
配体ligand与受体的结合对细胞通信至关重要。
9.In drug design, a strong ligand can enhance the efficacy of a medication.
在药物设计中,强效的ligand可以增强药物的疗效。
10.The affinity of a ligand for its target can determine the strength of the biological response.
配体ligand与其靶标的亲和力可以决定生物反应的强度。
11.Researchers are studying how different ligands interact with proteins.
研究人员正在研究不同的ligand如何与蛋白质相互作用。
12.A specific ligand can activate a signaling pathway in the cell.
特定的ligand可以激活细胞内的信号通路。
作文
In the field of biochemistry, the term ligand refers to a molecule that binds to another (usually larger) molecule. This interaction is crucial for many biological processes, including signaling pathways, enzyme activity, and the regulation of various physiological functions. Understanding how ligands work can provide insights into the mechanisms of drug action, cellular communication, and even the development of new therapeutic strategies.To illustrate the importance of ligands, let’s consider the role they play in receptor-ligand interactions. Receptors are proteins located on the surface of cells or within cells that are designed to receive signals from the environment. When a ligand binds to a receptor, it triggers a series of biochemical events known as signal transduction. This process can lead to a wide range of cellular responses, such as changes in gene expression, alterations in cell metabolism, or even the initiation of cell division.For instance, consider the case of neurotransmitters, which are chemical ligands that transmit signals across synapses in the nervous system. When a neurotransmitter like dopamine binds to its corresponding receptor, it can affect mood, motivation, and movement. Abnormalities in these ligand-receptor interactions have been implicated in various neurological disorders, including schizophrenia and Parkinson's disease.Moreover, ligands are not only limited to biological systems; they also play a significant role in materials science and catalysis. In coordination chemistry, ligands are molecules or ions that can donate electron pairs to a central metal atom, forming complex structures. These metal-ligand complexes are essential in various applications, such as catalyzing chemical reactions, developing sensors, and creating new materials with unique properties.The study of ligands extends to pharmaceuticals as well. Many drugs are designed to mimic natural ligands to effectively bind to specific receptors. For example, certain cancer therapies use ligands that target and inhibit the activity of growth factor receptors that are overexpressed in tumors. By blocking these receptors, the drugs can prevent cancer cells from proliferating, thereby slowing down or stopping tumor growth.In conclusion, the concept of a ligand is fundamental to understanding a wide array of biological and chemical processes. From mediating cellular communication to facilitating catalytic reactions, ligands are integral components that influence the behavior of larger molecular structures. As research progresses, the knowledge gained about ligands will undoubtedly lead to advancements in medicine, environmental science, and materials engineering. Thus, delving deeper into the realm of ligands can unlock new possibilities for innovation and discovery in multiple scientific fields.
在生物化学领域,术语ligand指的是与另一个(通常是更大的)分子结合的分子。这种相互作用对许多生物过程至关重要,包括信号传导途径、酶活性以及各种生理功能的调节。理解ligands的工作原理可以为药物作用机制、细胞通信甚至新治疗策略的发展提供见解。为了说明ligands的重要性,让我们考虑它们在受体-配体相互作用中的作用。受体是位于细胞表面或细胞内部的蛋白质,旨在接收来自环境的信号。当ligand与受体结合时,它会触发一系列称为信号转导的生化事件。这个过程可以导致广泛的细胞反应,例如基因表达的变化、细胞代谢的改变,甚至细胞分裂的启动。例如,考虑神经递质的情况,神经递质是跨越神经系统突触传递信号的化学ligands。当像多巴胺这样的神经递质与其对应的受体结合时,它可以影响情绪、动机和运动。这些ligand-受体相互作用的异常与各种神经系统疾病有关,包括精神分裂症和帕金森病。此外,ligands不仅限于生物系统;它们在材料科学和催化中也发挥着重要作用。在配位化学中,ligands是能够向中心金属原子捐赠电子对的分子或离子,形成复杂结构。这些金属-配体复合物在各种应用中至关重要,例如催化化学反应、开发传感器和创造具有独特性质的新材料。对ligands的研究还扩展到药物领域。许多药物被设计为模仿天然ligands,以有效地与特定受体结合。例如,某些癌症疗法使用靶向并抑制在肿瘤中过度表达的生长因子受体的ligands。通过阻断这些受体,药物可以防止癌细胞增殖,从而减缓或停止肿瘤生长。总之,ligand的概念对于理解广泛的生物和化学过程是基础。从介导细胞通信到促进催化反应,ligands是影响更大分子结构行为的基本组成部分。随着研究的进展,关于ligands的知识无疑将推动医学、环境科学和材料工程的进步。因此,深入探讨ligands的领域可以为多个科学领域的创新和发现开辟新的可能性。