molar extinction coefficient

简明释义

克分子消光系数

英英释义

The molar extinction coefficient is a measure of how strongly a chemical species absorbs light at a given wavelength, defined as the absorbance of a solution per unit concentration and path length.

摩尔消光系数是衡量化学物质在特定波长下吸收光的强度的指标,定义为单位浓度和光程长度下溶液的吸光度。

例句

1.In spectrophotometry, the molar extinction coefficient (摩尔消光系数) allows us to calculate how much light is absorbed by a sample.

在分光光度法中,摩尔消光系数使我们能够计算样品吸收了多少光。

2.Different substances have unique molar extinction coefficients (摩尔消光系数) that can be used for identification.

不同的物质具有独特的摩尔消光系数,可用于识别。

3.The molar extinction coefficient (摩尔消光系数) is crucial for determining the concentration of a substance in solution.

摩尔消光系数在确定溶液中物质的浓度时至关重要。

4.The molar extinction coefficient (摩尔消光系数) is often expressed in units of L·mol⁻¹·cm⁻¹.

摩尔消光系数通常以L·mol⁻¹·cm⁻¹为单位表示。

5.To find the molar extinction coefficient (摩尔消光系数), you must perform a calibration curve using known concentrations.

要找到摩尔消光系数,必须使用已知浓度进行标定曲线实验。

作文

The concept of the molar extinction coefficient is fundamental in the field of chemistry and biochemistry. It refers to a measure of how strongly a chemical species absorbs light at a given wavelength, which is crucial for understanding various processes in both environmental and biological systems. The molar extinction coefficient is denoted by the symbol ε (epsilon) and is typically expressed in units of L·mol⁻¹·cm⁻¹. This coefficient allows scientists to determine the concentration of a substance in a solution by measuring the amount of light absorbed at a specific wavelength, using Beer-Lambert Law.In practical terms, when light passes through a solution containing a solute, some of that light is absorbed by the molecules of the solute. The amount of light absorbed is directly proportional to the concentration of the solute and the path length of the light through the solution. The molar extinction coefficient serves as a proportionality constant that relates these variables. Thus, a higher molar extinction coefficient indicates that a substance is more effective at absorbing light, which can be indicative of its chemical properties and behavior in different environments.Understanding the molar extinction coefficient is particularly important in applications like spectrophotometry, where it is used to quantify the concentration of substances in solution. For instance, in biochemical assays, researchers often utilize the molar extinction coefficient to determine the concentration of proteins or nucleic acids. By measuring the absorbance of a sample at a specific wavelength, they can apply the Beer-Lambert Law to calculate the concentration, provided they know the molar extinction coefficient for the substance being measured.Moreover, the molar extinction coefficient can vary significantly between different substances and even among different wavelengths for the same substance. This variability necessitates careful calibration and validation in experimental setups. For example, the molar extinction coefficient for DNA at 260 nm is commonly used to estimate DNA concentrations because nucleic acids absorb UV light strongly at this wavelength. Conversely, proteins may have different molar extinction coefficients depending on their amino acid composition and the presence of chromophores.In addition to its applications in laboratory settings, the molar extinction coefficient is also relevant in environmental science. For instance, understanding how pollutants absorb light can help in assessing their impact on aquatic ecosystems and determining their concentrations in natural waters. By knowing the molar extinction coefficient of a pollutant, scientists can use remote sensing techniques to monitor water quality and track changes over time.In conclusion, the molar extinction coefficient is a vital parameter in the study of light absorption by chemical substances. Its role in quantifying concentrations in solutions and its applications across various scientific disciplines highlight its importance. As research continues to advance, the understanding and utilization of the molar extinction coefficient will undoubtedly evolve, leading to new discoveries and innovations in chemistry, biology, and environmental science.

“摩尔消光系数”这个概念在化学和生物化学领域是基础性的。它指的是某种化学物质在特定波长下吸收光线的强度,这对于理解环境和生物系统中的各种过程至关重要。“摩尔消光系数”用符号ε(epsilon)表示,通常以L·mol⁻¹·cm⁻¹为单位。这一系数使科学家能够通过测量在特定波长下吸收的光量来确定溶液中物质的浓度,使用比尔-朗伯定律。在实际操作中,当光线通过含有溶质的溶液时,部分光线会被溶质分子吸收。吸收的光量与溶质的浓度和光线通过溶液的路径长度成正比。“摩尔消光系数”作为一个比例常数,连接了这些变量。因此,更高的“摩尔消光系数”表明某种物质在吸收光线方面更有效,这可能指示其化学性质和在不同环境中的行为。理解“摩尔消光系数”在光谱光度法等应用中尤为重要,科学家利用它来量化溶液中物质的浓度。例如,在生化分析中,研究人员通常利用“摩尔消光系数”来确定蛋白质或核酸的浓度。通过测量样品在特定波长下的吸光度,他们可以应用比尔-朗伯定律来计算浓度,前提是他们知道所测物质的“摩尔消光系数”。此外,“摩尔消光系数”在不同物质之间甚至同一物质的不同波长之间可能变化显著。这种变异性需要在实验设置中进行仔细的标定和验证。例如,DNA在260 nm处的“摩尔消光系数”常用于估算DNA浓度,因为核酸在该波长下强烈吸收紫外光。相反,蛋白质可能根据其氨基酸组成和色团的存在具有不同的“摩尔消光系数”。除了在实验室设置中的应用外,“摩尔消光系数”在环境科学中也相关。例如,了解污染物如何吸收光线可以帮助评估它们对水生生态系统的影响,并确定它们在自然水体中的浓度。通过知道污染物的“摩尔消光系数”,科学家可以利用遥感技术监测水质并跟踪随时间的变化。总之,“摩尔消光系数”是研究化学物质光吸收的重要参数。它在量化溶液中浓度和跨学科应用中的作用突显了其重要性。随着研究的不断进展,对“摩尔消光系数”的理解和利用无疑将不断演变,带来新的发现和创新,推动化学、生物学和环境科学的发展。

相关单词

molar

molar详解:怎么读、什么意思、用法

extinction

extinction详解:怎么读、什么意思、用法