scalenohedron

简明释义

[ˌskeɪlənəˈhiːdrən][ˌskeɪlənəˈhiːdrən]

n. 偏三角;偏三角面体

复 数 s c a l e n o h e d r o n s 或 s c a l e n o h e d r a

英英释义

A scalenohedron is a type of polyhedron that has faces which are all scalene triangles, meaning that each triangle has sides of different lengths.

不规则三棱柱是一种多面体,其所有面都是不等边三角形,意味着每个三角形的边长都不同。

单词用法

同义词

scalene pyramid

不等边金字塔

A scalene pyramid has no equal sides or angles.

不等边金字塔没有相等的边或角。

irregular polyhedron

不规则多面体

An irregular polyhedron can have varying face shapes and sizes.

不规则多面体可以有不同的面形状和大小。

反义词

regular polyhedron

正多面体

A regular polyhedron has all faces that are congruent regular polygons.

正多面体的所有面都是全等的正多边形。

equiangular polyhedron

等角多面体

In geometry, an equiangular polyhedron has all angles equal, which contrasts with the scalenohedron.

在几何学中,等角多面体的所有角度相等,这与不规则的scalenohedron形成对比。

例句

1.The geometry class studied various polyhedra, including a unique type called a scalenohedron.

几何课上学习了各种多面体,包括一种独特的类型,称为不等边多面体

2.To understand the properties of a scalenohedron, we need to analyze its angles and edges.

要理解不等边多面体的性质,我们需要分析它的角和边。

3.In crystallography, the scalenohedron is often observed in mineral formations.

在晶体学中,不等边多面体常常出现在矿物形成中。

4.The scalenohedron has faces that are not all congruent, making it an interesting study in geometry.

不等边多面体的面并非全等,这使得它在几何学中成为一个有趣的研究对象。

5.The artist created a sculpture inspired by the shape of a scalenohedron.

这位艺术家创作了一件受不等边多面体形状启发的雕塑。

作文

In the realm of geometry, various shapes and forms captivate our imagination, each with its unique properties and characteristics. One such intriguing shape is the scalenohedron, a term that may not be familiar to many, yet it holds a special place in the study of polyhedra. A scalenohedron is defined as a polyhedron in which all faces are scalene triangles, meaning that no two sides or angles are the same. This definition alone sparks curiosity about the complexity and beauty of such a geometric figure.To better understand the scalenohedron, we can start by exploring its structure. Unlike regular polyhedra, where faces are uniform, the scalenohedron presents a more chaotic appearance, as the irregularity of its triangular faces creates a dynamic visual effect. Each triangle contributes to the overall form, making the scalenohedron a fascinating subject for both mathematicians and artists alike.The study of polyhedra, including the scalenohedron, dates back to ancient civilizations. The Greeks were particularly interested in the properties of three-dimensional shapes, and they classified them into different categories based on their symmetries and face types. The scalenohedron, with its lack of symmetry, challenges our understanding of balance in geometric figures. It exemplifies how beauty can emerge from irregularity, reminding us that perfection is not always found in uniformity.In practical applications, the scalenohedron can be observed in various fields, including architecture, art, and natural sciences. For instance, certain crystals exhibit a scalenohedron structure, showcasing the inherent beauty of nature's design. In architecture, designers may draw inspiration from the scalenohedron to create unique and striking buildings that defy conventional shapes, pushing the boundaries of creativity.Furthermore, the scalenohedron serves as an excellent educational tool for students learning about geometry. By studying this polyhedron, learners can grasp concepts such as surface area, volume, and the properties of triangles. Engaging with the scalenohedron allows students to visualize complex mathematical principles, making abstract ideas more tangible and accessible.In conclusion, the scalenohedron is more than just a geometric term; it represents a world of exploration and creativity within mathematics. Its unique characteristics challenge our perceptions of symmetry and beauty, encouraging us to appreciate the diversity of shapes that exist in our universe. Whether in nature, art, or education, the scalenohedron continues to inspire and intrigue those who encounter it. As we delve deeper into the study of polyhedra, we uncover not only the mathematical intricacies of shapes like the scalenohedron but also the profound connections they have with the world around us.

在几何学的领域中,各种形状和形式吸引着我们的想象力,每一种都有其独特的属性和特征。其中一个引人入胜的形状是scalenohedron,这个术语可能对许多人来说并不熟悉,但它在多面体的研究中占有特殊的地位。scalenohedron被定义为一种多面体,其所有面都是不等边三角形,这意味着没有两个边或角是相同的。仅仅这个定义就激发了人们对这种几何图形复杂性和美感的好奇心。为了更好地理解scalenohedron,我们可以从探索它的结构开始。与正多面体不同,正多面体的面是均匀的,scalenohedron呈现出一种更混乱的外观,因为其三角形面的不规则性创造了一种动态的视觉效果。每个三角形都为整体形状做出了贡献,使得scalenohedron成为数学家和艺术家共同关注的迷人主题。多面体的研究,包括scalenohedron,可以追溯到古代文明。希腊人特别关注三维形状的性质,并根据其对称性和面类型将其分类。scalenohedron以其缺乏对称性挑战了我们对几何图形平衡的理解。它例证了如何从不规则性中产生美,提醒我们完美并不总是在统一中找到。在实际应用中,scalenohedron可以在建筑、艺术和自然科学等各个领域观察到。例如,某些晶体表现出scalenohedron结构,展示了自然设计固有的美。在建筑中,设计师可能会从scalenohedron中获得灵感,创造出独特而引人注目的建筑,打破常规形状,推动创意的边界。此外,scalenohedron作为学习几何的学生的优秀教育工具。通过研究这一多面体,学习者可以掌握表面积、体积和三角形的性质等概念。与scalenohedron的互动使学生能够可视化复杂的数学原理,使抽象的思想变得更加具体和易于理解。总之,scalenohedron不仅仅是一个几何术语;它代表了数学中探索和创造力的世界。其独特的特征挑战了我们对对称性和美的看法,鼓励我们欣赏存在于我们宇宙中的形状的多样性。无论是在自然、艺术还是教育中,scalenohedron继续激励和吸引那些遇见它的人。随着我们深入研究多面体,我们不仅揭示了像scalenohedron这样的形状的数学复杂性,还发现了它们与我们周围世界之间的深刻联系。