maximum flexural strength

简明释义

最大抗挠强度

英英释义

Maximum flexural strength refers to the highest stress that a material can withstand when subjected to bending before failure occurs.

最大弯曲强度指的是材料在弯曲作用下能够承受的最高应力,直到发生破坏为止。

例句

1.Researchers are exploring new alloys that can provide a higher maximum flexural strength 最大弯曲强度 for aerospace applications.

研究人员正在探索可以为航空航天应用提供更高最大弯曲强度 最大弯曲强度的新合金。

2.The design specifications required a minimum maximum flexural strength 最大弯曲强度 to prevent structural failure.

设计规范要求最低最大弯曲强度 最大弯曲强度以防止结构失效。

3.In the structural analysis, engineers focused on achieving a higher maximum flexural strength 最大弯曲强度 to ensure safety.

在结构分析中,工程师们专注于实现更高的最大弯曲强度 最大弯曲强度以确保安全。

4.The new composite material was tested to determine its maximum flexural strength 最大弯曲强度, which exceeded expectations.

新型复合材料经过测试,以确定其最大弯曲强度 最大弯曲强度,结果超出了预期。

5.The testing lab reported that the maximum flexural strength 最大弯曲强度 of the beam was significantly improved after reinforcement.

测试实验室报告称,经加固后,梁的最大弯曲强度 最大弯曲强度显著提高。

作文

The concept of maximum flexural strength refers to the highest amount of bending stress that a material can withstand before failure occurs. This property is particularly significant in engineering and construction, where materials are often subjected to various forms of stress. Understanding maximum flexural strength is essential for selecting appropriate materials for structural applications, ensuring safety and durability in buildings, bridges, and other infrastructures.In practical terms, maximum flexural strength is measured through standardized tests that determine how much load a material can bear when subjected to bending forces. For instance, concrete, steel, and wood each have different maximum flexural strength values, which influence their use in construction projects. Engineers must consider these values when designing structures to ensure they can support the expected loads without failing.For example, in the case of a beam used in a building, the maximum flexural strength will dictate how much weight the beam can safely support. If the weight exceeds this limit, the beam may bend or break, leading to potential structural failure. Therefore, engineers often conduct rigorous calculations and simulations to predict the performance of materials under various conditions, taking into account factors such as temperature changes, humidity, and the presence of dynamic loads.Moreover, advancements in material science have led to the development of composite materials with enhanced maximum flexural strength. These materials combine different substances to achieve superior properties that surpass those of traditional materials. For instance, fiber-reinforced polymers (FRPs) are increasingly used in construction due to their high maximum flexural strength and lightweight nature. They are particularly beneficial in applications where reducing weight is crucial while maintaining structural integrity.In addition to construction, the principle of maximum flexural strength also applies to various industries, including automotive and aerospace. Manufacturers strive to create components that can endure significant bending forces without compromising performance. For example, car frames and airplane wings must possess sufficient maximum flexural strength to withstand the stresses encountered during operation, such as acceleration, turbulence, and impacts.Furthermore, understanding the maximum flexural strength of materials can aid in the recycling and sustainability efforts within the industry. By choosing materials with optimal bending strength, manufacturers can produce products that last longer and require less frequent replacement. This not only reduces waste but also conserves resources, contributing to a more sustainable future.In conclusion, the concept of maximum flexural strength plays a vital role in various fields, particularly in engineering and construction. It influences material selection, design processes, and overall structural integrity. As technology advances, the pursuit of materials with enhanced maximum flexural strength continues to drive innovation, enabling the creation of safer, more efficient structures and products. By prioritizing this property, professionals can ensure that their designs meet the demands of modern life while safeguarding public safety and promoting sustainability.

最大弯曲强度(maximum flexural strength)的概念是指材料在发生破坏之前能够承受的最高弯曲应力。这一特性在工程和建筑中尤为重要,因为材料通常会受到各种形式的应力。理解maximum flexural strength对于选择适合结构应用的材料至关重要,以确保建筑、桥梁和其他基础设施的安全性和耐用性。在实际操作中,maximum flexural strength通过标准化测试进行测量,以确定材料在受到弯曲力时能够承受的负荷。例如,混凝土、钢材和木材各自具有不同的maximum flexural strength值,这些值影响它们在建筑项目中的使用。工程师必须考虑这些值,以确保设计的结构能够在不发生故障的情况下支持预期的负载。例如,在建筑中使用的梁,其maximum flexural strength将决定该梁可以安全支持多少重量。如果重量超过这一限度,梁可能会弯曲或断裂,从而导致潜在的结构故障。因此,工程师通常会进行严格的计算和模拟,以预测材料在各种条件下的性能,同时考虑温度变化、湿度以及动态负载的存在等因素。此外,材料科学的进步导致了具有增强maximum flexural strength的复合材料的发展。这些材料结合了不同的物质,以获得优于传统材料的优越特性。例如,纤维增强聚合物(FRP)因其高maximum flexural strength和轻量特性而越来越多地用于建筑。在需要在保持结构完整性的同时减轻重量的应用中,它们特别有用。除了建筑之外,maximum flexural strength的原理还适用于汽车和航空航天等多个行业。制造商努力创建能够承受显著弯曲力而不影响性能的组件。例如,汽车车架和飞机机翼必须具备足够的maximum flexural strength以承受在操作过程中遇到的应力,如加速、气流和冲击。此外,理解材料的maximum flexural strength可以帮助行业内的回收和可持续发展努力。通过选择具有最佳弯曲强度的材料,制造商可以生产出更耐用的产品,减少更换频率。这不仅减少了废物,还节约了资源,有助于实现更可持续的未来。总之,maximum flexural strength的概念在各个领域中扮演着重要角色,尤其是在工程和建筑中。它影响材料选择、设计过程和整体结构的完整性。随着技术的进步,追求具有增强maximum flexural strength的材料继续推动创新,使得能够创建更安全、更高效的结构和产品。通过优先考虑这一特性,专业人士可以确保他们的设计满足现代生活的需求,同时保障公众安全并促进可持续发展。

相关单词

maximum

maximum详解:怎么读、什么意思、用法

flexural

flexural详解:怎么读、什么意思、用法

strength

strength详解:怎么读、什么意思、用法