mass spectroscopy
简明释义
质谱分析
英英释义
例句
1.The researcher used mass spectroscopy 质谱分析 to identify the molecular composition of the sample.
研究人员使用质谱分析来识别样品的分子组成。
2.The forensic lab utilized mass spectroscopy 质谱分析 to identify substances found at a crime scene.
法医实验室利用质谱分析识别在犯罪现场发现的物质。
3.The environmental scientist employed mass spectroscopy 质谱分析 to detect pollutants in water samples.
环境科学家采用质谱分析检测水样中的污染物。
4.In pharmaceutical development, mass spectroscopy 质谱分析 is crucial for determining drug purity.
在药物开发中,质谱分析对确定药物纯度至关重要。
5.Using mass spectroscopy 质谱分析, we can analyze the isotopic ratios of elements.
通过质谱分析,我们可以分析元素的同位素比率。
作文
Mass spectroscopy is a powerful analytical technique used to identify the composition of a sample by measuring the mass-to-charge ratio of its ions. This method has revolutionized various fields, including chemistry, biology, and environmental science. By providing detailed information about the molecular weight and structure of compounds, mass spectroscopy (质谱分析) enables scientists to gain insights into the composition of complex mixtures. The fundamental principle behind mass spectroscopy (质谱分析) involves ionizing chemical species and sorting the ions based on their mass-to-charge ratios. In this process, a sample is vaporized and ionized, usually in a vacuum, allowing charged particles to be generated. These ions are then accelerated through an electric field, which separates them according to their mass and charge. The resulting data is then analyzed to produce a mass spectrum, which displays the abundance of each ion as a function of its mass-to-charge ratio.One of the key advantages of mass spectroscopy (质谱分析) is its sensitivity. It can detect trace amounts of substances, making it invaluable for applications such as drug testing, forensic analysis, and environmental monitoring. For instance, in toxicology, mass spectroscopy (质谱分析) can identify and quantify drugs or their metabolites in biological samples, providing crucial information in criminal investigations or clinical settings.Moreover, mass spectroscopy (质谱分析) is highly versatile and can be coupled with other techniques like chromatography to enhance its analytical capabilities. When combined with gas chromatography (GC) or liquid chromatography (LC), mass spectroscopy (质谱分析) can separate complex mixtures before analyzing them, leading to more accurate and detailed results. This combination is widely used in proteomics, where researchers analyze proteins in biological samples, helping to understand disease mechanisms and discover potential biomarkers.The development of new ionization techniques, such as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), has further expanded the applications of mass spectroscopy (质谱分析). These methods allow for the analysis of larger and more complex molecules, including proteins and nucleic acids, which were previously challenging to study using traditional techniques.In conclusion, mass spectroscopy (质谱分析) is an indispensable tool in modern science. Its ability to provide precise and detailed information about the molecular composition of substances makes it essential for research and industry alike. As technology continues to advance, we can expect even more innovative applications of mass spectroscopy (质谱分析) that will further enhance our understanding of chemical and biological systems. Whether in the laboratory or in the field, mass spectroscopy (质谱分析) remains at the forefront of analytical chemistry, driving discoveries and innovations across multiple disciplines.
质谱分析是一种强大的分析技术,用于通过测量样品中离子的质量与电荷比来识别其组成。这种方法在化学、生物学和环境科学等多个领域引发了革命。通过提供有关化合物分子量和结构的详细信息,质谱分析(质谱分析)使科学家能够深入了解复杂混合物的组成。质谱分析(质谱分析)的基本原理涉及对化学物质进行电离,并根据其质量与电荷比对离子进行排序。在此过程中,样品被气化并电离,通常是在真空中,允许生成带电粒子。这些离子然后通过电场加速,根据其质量和电荷进行分离。随后,得到的数据被分析以生成质谱图,显示每个离子的丰度与其质量-电荷比的关系。质谱分析(质谱分析)的一个主要优势是其灵敏度。它可以检测微量物质,使其在药物测试、法医分析和环境监测等应用中不可或缺。例如,在毒理学中,质谱分析(质谱分析)可以识别和定量生物样本中的药物或其代谢物,为刑事调查或临床环境提供关键信息。此外,质谱分析(质谱分析)具有高度的多功能性,可以与色谱等其他技术结合,增强其分析能力。当与气相色谱(GC)或液相色谱(LC)结合时,质谱分析(质谱分析)可以在分析之前分离复杂混合物,从而获得更准确和详细的结果。这种组合在蛋白质组学中广泛应用,研究人员分析生物样本中的蛋白质,帮助理解疾病机制并发现潜在的生物标志物。新的电离技术的发展,如电喷雾电离(ESI)和基质辅助激光解吸电离(MALDI),进一步扩展了质谱分析(质谱分析)的应用。这些方法允许分析更大和更复杂的分子,包括蛋白质和核酸,这在以前使用传统技术时是具有挑战性的。总之,质谱分析(质谱分析)是现代科学中不可或缺的工具。其提供关于物质分子组成的精确和详细信息的能力,使其对研究和工业至关重要。随着技术的不断进步,我们可以期待质谱分析(质谱分析)的更多创新应用,这将进一步增强我们对化学和生物系统的理解。无论是在实验室还是在现场,质谱分析(质谱分析)始终处于分析化学的前沿,推动着各个学科的发现和创新。
相关单词