local equilibrium
简明释义
局部平衡
英英释义
例句
1.During the reaction, the system reached a state of local equilibrium 局部平衡 before proceeding to completion.
反应过程中,系统在继续进行之前达到了局部平衡状态。
2.The model assumes that the particles are in local equilibrium 局部平衡 at each point in space.
该模型假设粒子在空间的每个点都处于局部平衡状态。
3.In thermodynamics, we often assume a local equilibrium 局部平衡 when analyzing small systems.
在热力学中,我们在分析小系统时常常假设存在局部平衡。
4.In ecology, populations can reach a local equilibrium 局部平衡 based on resource availability.
在生态学中,种群可以根据资源的可用性达到局部平衡。
5.The concept of local equilibrium 局部平衡 is crucial in fluid dynamics to simplify complex calculations.
在流体动力学中,局部平衡的概念对于简化复杂计算至关重要。
作文
In the realm of thermodynamics and statistical mechanics, the concept of local equilibrium plays a crucial role in understanding the behavior of systems that are not globally in equilibrium. Local equilibrium refers to a state where, within a small region of a system, the properties such as temperature, pressure, and chemical potential can be considered uniform and well-defined, even if the entire system is undergoing changes or is far from equilibrium on a larger scale. This concept allows scientists to apply the laws of thermodynamics to analyze and predict the behavior of complex systems in a more manageable way.For instance, consider a gas in a container that is being heated from one side. The side receiving heat will have a higher temperature compared to the cooler side. However, if we examine a small volume of gas at the midpoint between the hot and cold sides, we can assume that this small volume is in local equilibrium. In this local region, the temperature can be taken as constant, allowing us to apply thermodynamic equations effectively. This assumption simplifies calculations and provides insights into how heat transfer occurs within the gas.The importance of local equilibrium extends beyond thermodynamics into various fields such as fluid dynamics, astrophysics, and even biology. For example, in fluid dynamics, when analyzing the flow of a viscous fluid, it is often assumed that the fluid elements are in local equilibrium with their immediate surroundings. This assumption leads to the derivation of the Navier-Stokes equations, which describe how fluids behave under different conditions.Moreover, local equilibrium is significant in the study of chemical reactions. In a reaction mixture, even if the overall system is not at equilibrium, individual regions may reach a state where the rates of forward and reverse reactions balance out locally. This principle is essential for understanding reaction kinetics and mechanisms, especially in heterogeneous catalysis, where reactions occur at the interface between phases.One of the key implications of the local equilibrium assumption is its ability to simplify complex problems. By breaking down a large system into smaller, manageable parts, researchers can focus on the interactions and properties of these local regions without needing to account for the entire system's behavior simultaneously. This reductionist approach is common in scientific research, where understanding the micro-level interactions can provide insights into macro-level phenomena.However, it is crucial to recognize the limitations of the local equilibrium assumption. In systems where gradients are steep or where rapid changes occur, the assumption may break down, leading to inaccurate predictions. For instance, in shock waves or phase transitions, the conditions may change so quickly that the local equilibrium cannot be established, necessitating more complex models that account for non-equilibrium effects.In conclusion, the concept of local equilibrium serves as a powerful tool in the analysis of various physical systems. It allows scientists and engineers to simplify complex behaviors into more comprehensible parts while providing a framework for applying thermodynamic principles. Understanding when and how to use the local equilibrium assumption is essential for accurately modeling real-world phenomena, making it a fundamental aspect of many scientific disciplines.
在热力学和统计力学的领域中,局部平衡的概念在理解不处于全局平衡的系统行为方面起着至关重要的作用。局部平衡是指在系统的小区域内,温度、压力和化学势等属性可以被视为均匀且明确的,即使整个系统正在经历变化或在更大范围内远离平衡。这个概念使科学家能够应用热力学定律来分析和预测复杂系统的行为,从而以更可管理的方式进行研究。例如,考虑一个容器中的气体,正在从一侧加热。接收热量的一侧将具有比冷侧更高的温度。然而,如果我们检查位于热侧和冷侧之间的气体中点的小体积,我们可以假设这个小体积处于局部平衡状态。在这个局部区域内,温度可以被视为恒定,这使我们能够有效地应用热力学方程。这个假设简化了计算,并提供了关于气体内热量传递如何发生的见解。局部平衡的重要性超越了热力学,延伸到流体动力学、天体物理学甚至生物学等多个领域。例如,在流体动力学中,分析粘性流体的流动时,通常假设流体元素与其周围环境处于局部平衡。这一假设导致了描述流体在不同条件下行为的纳维-斯托克斯方程的推导。此外,局部平衡在化学反应研究中也具有重要意义。在反应混合物中,即使整体系统不处于平衡,个别区域可能达到一种局部的前向和反向反应速率平衡的状态。这个原理对于理解反应动力学和机制至关重要,特别是在异相催化中,反应发生在相之间的界面上。局部平衡假设的一个关键含义是它能够简化复杂问题。通过将大型系统分解为更小、更可管理的部分,研究人员可以专注于这些局部区域的相互作用和属性,而无需同时考虑整个系统的行为。这种还原论方法在科学研究中很常见,理解微观层面的相互作用可以为宏观现象提供见解。然而,重要的是要认识到局部平衡假设的局限性。在梯度陡峭或快速变化的系统中,这一假设可能会失效,导致不准确的预测。例如,在冲击波或相变中,条件变化可能如此迅速,以至于无法建立局部平衡,这需要更复杂的模型来考虑非平衡效应。总之,局部平衡的概念作为分析各种物理系统的有力工具。它使科学家和工程师能够将复杂行为简化为更易理解的部分,同时提供了应用热力学原理的框架。理解何时以及如何使用局部平衡假设对于准确建模现实世界现象至关重要,使其成为许多科学学科的基本方面。
相关单词