isotopic mass
简明释义
同位素量
英英释义
例句
1.The atomic weight of an element is calculated using the average of its different isotopes, weighted by their isotopic mass.
元素的原子量是通过其不同同位素的平均值计算的,权重由它们的同位素质量决定。
2.In mass spectrometry, the isotopic mass of a sample can help identify the presence of specific isotopes.
在质谱分析中,样本的同位素质量可以帮助识别特定同位素的存在。
3.The isotopic mass of carbon-12 is defined as exactly 12 atomic mass units.
碳-12的同位素质量被定义为恰好12个原子质量单位。
4.Researchers often use the isotopic mass to trace the origin of geological samples.
研究人员常常使用同位素质量来追踪地质样本的来源。
5.The isotopic mass of hydrogen isotopes varies significantly, affecting their chemical behavior.
氢同位素的同位素质量差异显著,影响其化学行为。
作文
The concept of isotopic mass is fundamental in the field of chemistry and physics, particularly in understanding the composition of elements and their isotopes. To grasp the significance of isotopic mass, we first need to explore what isotopes are. Isotopes are variants of a particular chemical element that have the same number of protons but different numbers of neutrons. This difference in neutron count results in variations in atomic mass, which leads us to the importance of isotopic mass. Isotopic mass refers to the mass of a specific isotope of an element, measured in atomic mass units (amu). For example, carbon has several isotopes, including carbon-12 and carbon-14. The isotopic mass of carbon-12 is approximately 12 amu, while carbon-14 has an isotopic mass of about 14 amu. These values are crucial for various applications, including radiocarbon dating, which relies on the decay of carbon-14 to estimate the age of organic materials.Understanding isotopic mass is not only important in theoretical contexts but also has practical implications in fields such as medicine, geology, and environmental science. In medicine, for instance, isotopes are used in diagnostic imaging and treatment. Radioactive isotopes can be used to target cancer cells, providing a precise method for treatment without harming surrounding healthy tissue. The isotopic mass of these isotopes must be accurately known to ensure effective dosages and minimize side effects.In geology, the study of isotopic mass helps scientists understand the age of rocks and fossils through techniques like uranium-lead dating and potassium-argon dating. By measuring the isotopic mass of certain isotopes present in these materials, geologists can determine when they formed, shedding light on the history of the Earth and its processes.Moreover, in environmental science, the analysis of isotopic mass plays a critical role in tracing pollution sources and understanding climate change. Different sources of pollutants can have distinct isotopic signatures, allowing researchers to identify their origins. Additionally, studying the isotopic mass of oxygen and hydrogen in water molecules helps scientists understand past climate conditions and predict future changes.In conclusion, the study of isotopic mass is a vital aspect of many scientific disciplines. It provides insights into the behavior of elements and their isotopes, with significant applications in medicine, geology, and environmental science. As technology advances, our ability to measure and utilize isotopic mass will continue to improve, leading to new discoveries and innovations that can benefit society as a whole. Understanding isotopic mass not only enhances our knowledge of the natural world but also equips us with tools to address pressing global challenges.
“同位素质量”这一概念在化学和物理学领域中至关重要,特别是在理解元素及其同位素的组成方面。为了掌握“同位素质量”的重要性,我们首先需要探讨什么是同位素。同位素是某一特定化学元素的变体,它们具有相同数量的质子但不同数量的中子。这种中子数的差异导致原子质量的变化,这使得“同位素质量”变得重要。“同位素质量”是指元素特定同位素的质量,以原子质量单位(amu)为单位进行测量。例如,碳有几种同位素,包括碳-12和碳-14。碳-12的“同位素质量”约为12 amu,而碳-14的“同位素质量”约为14 amu。这些数值对于各种应用至关重要,包括放射性碳测年,它依赖于碳-14的衰变来估算有机材料的年龄。理解“同位素质量”不仅在理论上重要,而且在医学、地质学和环境科学等领域具有实际意义。例如,在医学中,同位素用于诊断成像和治疗。放射性同位素可以用于靶向癌细胞,提供一种精确的方法来治疗,而不伤害周围的健康组织。这些同位素的“同位素质量”必须准确了解,以确保有效的剂量并最小化副作用。在地质学中,“同位素质量”的研究帮助科学家通过铀-铅测年和钾-氩测年等技术了解岩石和化石的年龄。通过测量这些材料中某些同位素的“同位素质量”,地质学家可以确定它们形成的时间,从而揭示地球及其过程的历史。此外,在环境科学中,“同位素质量”的分析在追踪污染源和理解气候变化方面发挥着关键作用。不同来源的污染物可能具有不同的同位素特征,使研究人员能够识别它们的来源。此外,研究水分子中氧和氢的“同位素质量”有助于科学家了解过去的气候条件并预测未来的变化。总之,“同位素质量”的研究是许多科学学科的重要方面。它提供了对元素及其同位素行为的洞察,具有医学、地质学和环境科学等重大应用。随着科技的进步,我们测量和利用“同位素质量”的能力将继续提高,从而带来新的发现和创新,造福整个社会。理解“同位素质量”不仅增强了我们对自然世界的知识,还为我们提供了应对紧迫全球挑战的工具。