irreversible reaction
简明释义
不可逆反应
英英释义
例句
1.The rusting of iron is a classic example of an irreversible reaction 不可逆反应 that leads to the formation of iron oxide.
铁的生锈是一个经典的不可逆反应例子,导致氧化铁的形成。
2.In biological systems, the process of cellular respiration involves several irreversible reactions 不可逆反应 that release energy.
在生物系统中,细胞呼吸的过程涉及几个不可逆反应,释放能量。
3.In many chemical processes, an irreversible reaction 不可逆反应 occurs, meaning the reactants cannot be converted back once the products are formed.
在许多化学过程中,发生了一个不可逆反应,这意味着反应物一旦形成产品就无法再转化回去。
4.Photosynthesis includes both reversible and irreversible reactions 不可逆反应, which contribute to the conversion of light energy into chemical energy.
光合作用包括可逆反应和不可逆反应,有助于将光能转化为化学能。
5.During the cooking of an egg, the proteins undergo an irreversible reaction 不可逆反应 that changes their structure permanently.
在煮鸡蛋的过程中,蛋白质经历了一个不可逆反应,永久改变了它们的结构。
作文
In the study of chemistry, one fundamental concept that often comes up is the idea of an irreversible reaction. An irreversible reaction refers to a chemical process where the reactants convert to products and cannot be converted back to the original reactants under normal conditions. This concept is crucial for understanding various chemical processes that occur in nature and in industrial applications. To illustrate this concept, consider the example of combustion. When a substance like wood or gasoline burns, it reacts with oxygen in the air to produce carbon dioxide, water, and heat. The chemical equation for this process can be represented as follows: C + O2 → CO2 + H2O + Energy In this case, the reactants (wood or gasoline and oxygen) are transformed into products (carbon dioxide and water), and once this reaction takes place, it is impossible to revert the carbon dioxide and water back into wood or gasoline. This characteristic defines it as an irreversible reaction. Another example of an irreversible reaction is the process of rusting. When iron reacts with oxygen and moisture in the air, it forms iron oxide, commonly known as rust. The chemical reaction can be summarized as: 4Fe + 3O2 + 6H2O → 4Fe(OH)3 Over time, the iron oxide continues to deteriorate, further making it impossible to return to its original metallic state. Thus, rusting is another clear example of an irreversible reaction. Understanding irreversible reactions is essential in various fields, such as environmental science, materials science, and even biochemistry. For instance, in environmental science, the combustion of fossil fuels leads to the production of greenhouse gases, which contribute to climate change. Once these gases are emitted into the atmosphere, they cannot simply be converted back to their original forms, highlighting the irreversible nature of such reactions. In the context of biochemistry, many metabolic processes within living organisms involve irreversible reactions. Enzymatic reactions that break down glucose for energy are examples of this kind of reaction. The breakdown of glucose into carbon dioxide and water releases energy, and while the products can be used for other biological processes, the original glucose molecule cannot be recreated from these products. In conclusion, the concept of an irreversible reaction plays a vital role in our understanding of chemistry and its applications. From combustion and rusting to metabolic processes, these reactions illustrate the transformation of substances in a way that is permanent under normal conditions. Recognizing the implications of irreversible reactions helps us appreciate the complexity of chemical interactions and their impact on our world. As we continue to explore the depths of chemistry, the understanding of these reactions will aid in developing sustainable practices and innovations in various fields. Overall, the significance of irreversible reactions extends beyond the confines of the laboratory; it influences environmental policies, industrial practices, and even our daily lives. Therefore, grasping this concept is not only academically enriching but also essential for making informed decisions regarding our planet's future.
在化学研究中,一个经常出现的基本概念是不可逆反应的思想。不可逆反应指的是一种化学过程,其中反应物转化为产物,并且在正常条件下无法再转化回原来的反应物。这个概念对于理解自然界和工业应用中发生的各种化学过程至关重要。为了说明这一概念,考虑燃烧的例子。当像木材或汽油这样的物质燃烧时,它与空气中的氧气反应,生成二氧化碳、水和热量。这个过程的化学方程可以表示为:C + O2 → CO2 + H2O + 能量在这种情况下,反应物(木材或汽油和氧气)转化为产物(二氧化碳和水),而一旦这个反应发生,就不可能将二氧化碳和水重新转化为木材或汽油。这一特性使其定义为不可逆反应。另一个不可逆反应的例子是生锈的过程。当铁与空气中的氧气和水分反应时,会形成氧化铁,通常称为锈。这个化学反应可以总结为:4Fe + 3O2 + 6H2O → 4Fe(OH)3随着时间的推移,氧化铁会继续恶化,进一步使其不可能恢复到原来的金属状态。因此,生锈是另一个明显的不可逆反应的例子。理解不可逆反应在各个领域都是至关重要的,例如环境科学、材料科学甚至生物化学。例如,在环境科学中,化石燃料的燃烧导致温室气体的产生,这对气候变化有贡献。一旦这些气体排放到大气中,就不能简单地再转化回它们的原始形式,突显了这种反应的不可逆性。在生物化学的背景下,许多生物体内的代谢过程涉及不可逆反应。分解葡萄糖以获取能量的酶促反应就是这种反应的例子。葡萄糖分解为二氧化碳和水释放能量,虽然产物可以用于其他生物过程,但原始的葡萄糖分子不能从这些产物中重新合成。总之,不可逆反应的概念在我们理解化学及其应用中扮演着重要角色。从燃烧和生锈到代谢过程,这些反应展示了物质以一种在正常条件下是永久性的方式转变。认识到不可逆反应的影响帮助我们欣赏化学相互作用的复杂性及其对我们世界的影响。随着我们继续探索化学的深度,对这些反应的理解将有助于在各个领域开发可持续的实践和创新。总体而言,不可逆反应的重要性超越了实验室的范围;它影响环境政策、工业实践,甚至我们的日常生活。因此,掌握这一概念不仅在学术上是丰富的,而且对于就我们星球的未来做出明智决策是必不可少的。
相关单词