ionic bond

简明释义

离子键

英英释义

An ionic bond is a type of chemical bond that occurs between two atoms when one atom transfers one or more of its electrons to another atom, resulting in the formation of oppositely charged ions that are held together by electrostatic forces.

离子键是一种化学键,发生在两个原子之间,当一个原子将一个或多个电子转移给另一个原子时,形成带有相反电荷的离子,这些离子通过静电力相互吸引而结合在一起。

例句

1.When potassium reacts with bromine, they form an ionic bond 离子键 resulting in potassium bromide.

当钾与溴反应时,它们形成一个离子键,产生溴化钾。

2.The formation of an ionic bond 离子键 occurs when sodium donates an electron to chlorine.

钠向氯捐赠电子时,形成了一个离子键

3.In table salt, the ionic bond 离子键 between sodium and chloride ions creates a stable compound.

在食盐中,钠离子和氯离子之间的离子键形成了一个稳定的化合物。

4.The strength of an ionic bond 离子键 is influenced by the charges of the ions involved.

一个离子键的强度受参与离子的电荷影响。

5.Magnesium oxide has a strong ionic bond 离子键 due to the high charge of magnesium and oxygen ions.

氧化镁由于镁离子和氧离子的高电荷而具有强的离子键

作文

In the realm of chemistry, understanding the fundamental forces that hold atoms together is crucial for comprehending the behavior of matter. One of the most significant types of chemical bonding is the ionic bond, which occurs when one atom donates an electron to another, resulting in the formation of charged ions. This process is essential for creating many compounds that are vital to both organic and inorganic chemistry. For instance, when sodium (Na) interacts with chlorine (Cl), sodium donates one electron to chlorine, resulting in the formation of a positively charged sodium ion (Na+) and a negatively charged chloride ion (Cl-). The electrostatic attraction between these oppositely charged ions forms a strong ionic bond, creating sodium chloride, commonly known as table salt.The nature of ionic bonds contributes to several unique properties of ionic compounds. Firstly, these compounds typically have high melting and boiling points due to the strong attractions between the ions. For example, sodium chloride has a melting point of about 801 degrees Celsius. This high thermal stability makes ionic compounds suitable for various applications, including food preservation and industrial processes.Moreover, ionic bonds result in the formation of crystalline structures. Ionic compounds tend to arrange themselves in a regular, repeating lattice structure, which maximizes the attractive forces between the ions while minimizing repulsive forces. This arrangement not only contributes to the hardness of ionic solids but also affects their solubility in water. Many ionic compounds dissolve readily in water, dissociating into their constituent ions, which is a critical factor in biological systems and environmental chemistry.The ability of ionic bonds to conduct electricity is another fascinating aspect. In solid form, ionic compounds do not conduct electricity because the ions are fixed in place within the crystal lattice. However, when dissolved in water or melted, the ions are free to move, allowing the solution or molten substance to conduct electrical current. This property is exploited in various applications, such as electrolytes in batteries and electrolysis processes.Furthermore, understanding ionic bonds is essential for grasping more complex chemical interactions. For instance, many biological molecules, including DNA and proteins, rely on ionic interactions for their structure and function. The balance of positive and negative charges within these molecules can influence their stability and reactivity, showcasing the importance of ionic bonds beyond simple compounds.In conclusion, the concept of ionic bonds is a cornerstone of chemical science. By facilitating the formation of stable compounds, influencing physical properties, and playing a crucial role in biological systems, ionic bonds demonstrate the intricate connections between atomic behavior and the macroscopic world. A deeper understanding of these bonds not only enhances our knowledge of chemistry but also opens doors to advancements in various scientific fields, including materials science, biochemistry, and environmental science.

在化学领域,理解保持原子结合在一起的基本力对于理解物质的行为至关重要。其中最重要的化学键类型之一是离子键,它发生在一个原子将电子捐赠给另一个原子时,导致带电离子的形成。这个过程对于创造许多对有机和无机化学至关重要的化合物是必要的。例如,当钠(Na)与氯(Cl)相互作用时,钠将一个电子捐赠给氯,从而形成一个带正电的钠离子(Na+)和一个带负电的氯离子(Cl-)。这些带相反电荷的离子之间的静电吸引力形成了强大的离子键,生成氯化钠,通常被称为食盐。离子键的性质赋予了离子化合物几个独特的特性。首先,这些化合物通常具有高熔点和沸点,因为离子之间的强吸引力。例如,氯化钠的熔点约为801摄氏度。这种高热稳定性使得离子化合物适用于各种应用,包括食品保存和工业过程。此外,离子键导致晶体结构的形成。离子化合物往往以规则的、重复的晶格结构排列,这样可以最大程度地增强离子之间的吸引力,同时最小化排斥力。这种排列不仅有助于离子固体的硬度,还影响它们在水中的溶解度。许多离子化合物在水中易于溶解,解离成其组成离子,这在生物系统和环境化学中是一个关键因素。离子键的导电能力是另一个令人着迷的方面。在固态下,离子化合物不导电,因为离子被固定在晶体格子中。然而,当溶解在水中或熔化时,离子可以自由移动,使溶液或熔融物质能够导电。这一特性在各种应用中得到利用,例如电池中的电解质和电解过程。此外,理解离子键对于掌握更复杂的化学相互作用至关重要。例如,许多生物分子,包括DNA和蛋白质,依赖于离子相互作用来维持其结构和功能。这些分子内部的正负电荷平衡可以影响其稳定性和反应性,展示了离子键在简单化合物之外的重要性。总之,离子键的概念是化学科学的基石。通过促进稳定化合物的形成、影响物理性质以及在生物系统中发挥关键作用,离子键展示了原子行为与宏观世界之间的复杂联系。对这些键的深入理解不仅增强了我们对化学的知识,而且为材料科学、生物化学和环境科学等各个科学领域的进步打开了大门。

相关单词

ionic

ionic详解:怎么读、什么意思、用法