intramolecular rotation
简明释义
分子内回转
英英释义
例句
1.In organic chemistry, intramolecular rotation 分子内旋转 can affect the reactivity of a compound.
在有机化学中,intramolecular rotation 分子内旋转会影响化合物的反应性。
2.The concept of intramolecular rotation 分子内旋转 is essential for predicting the conformations of large molecules.
理解intramolecular rotation 分子内旋转的概念对于预测大分子的构象至关重要。
3.Understanding intramolecular rotation 分子内旋转 can lead to advancements in material science.
理解intramolecular rotation 分子内旋转可以推动材料科学的进步。
4.The study of intramolecular rotation 分子内旋转 helps chemists understand molecular flexibility.
对intramolecular rotation 分子内旋转的研究帮助化学家理解分子灵活性。
5.Researchers measured the energy barriers associated with intramolecular rotation 分子内旋转 in their experiments.
研究人员在实验中测量了与intramolecular rotation 分子内旋转相关的能量屏障。
作文
Intramolecular forces play a crucial role in determining the physical and chemical properties of molecules. One fascinating aspect of molecular behavior is the phenomenon known as intramolecular rotation, which refers to the rotation of atoms within a single molecule around a bond. This process is essential for understanding how molecules interact with each other and how they respond to various stimuli. In this essay, we will explore the concept of intramolecular rotation in detail, examining its significance in molecular dynamics and its implications in fields such as chemistry and biochemistry.To begin with, intramolecular rotation occurs when certain bonds within a molecule allow for rotational movement. For instance, in aliphatic compounds, the rotation around single (sigma) bonds is generally unrestricted, leading to a variety of conformations. These different shapes can significantly influence the molecule's reactivity and interactions with other substances. For example, in organic chemistry, the spatial arrangement of atoms can affect how a molecule fits into an enzyme's active site, thereby influencing the rate of biochemical reactions.Moreover, intramolecular rotation is not just limited to simple organic molecules. It also plays a vital role in larger, more complex structures such as proteins and nucleic acids. In proteins, the flexibility provided by intramolecular rotation allows for the dynamic nature of protein folding and function. The ability of amino acid side chains to rotate can lead to different conformations, which are critical for the protein's biological activity. Similarly, in DNA, the rotation of bases around the sugar-phosphate backbone contributes to the overall stability and functionality of the double helix structure.However, while intramolecular rotation is essential for molecular flexibility, it can also pose challenges in certain contexts. For instance, in drug design, understanding how a drug molecule rotates within its binding site can help chemists optimize its efficacy. If a molecule has too much rotational freedom, it may not bind effectively to its target, necessitating modifications to restrict its movement. Therefore, a delicate balance must be maintained between rotational freedom and binding affinity.In addition to its implications in chemistry and biology, intramolecular rotation is also significant in materials science. The mechanical properties of polymers, for instance, are influenced by the rotational dynamics of their constituent monomers. By manipulating the degree of intramolecular rotation in polymer chains, scientists can tailor materials for specific applications, ranging from flexible electronics to durable construction materials.In conclusion, intramolecular rotation is a fundamental concept that underpins many aspects of molecular behavior. Its influence extends across various scientific disciplines, highlighting the interconnectedness of molecular structure and function. A deeper understanding of intramolecular rotation not only enhances our knowledge of molecular dynamics but also paves the way for advancements in areas such as drug development and materials engineering. As research continues to uncover the complexities of molecular interactions, the importance of intramolecular rotation will undoubtedly remain a key focus in the quest for scientific knowledge.
分子内旋转是指分子内部原子围绕某个键的旋转现象。这一过程对于理解分子之间的相互作用以及它们如何响应各种刺激至关重要。在这篇文章中,我们将详细探讨分子内旋转的概念,研究其在分子动力学中的重要性,以及在化学和生物化学等领域的影响。首先,分子内旋转发生在某些分子内部的键允许旋转运动的情况下。例如,在脂肪族化合物中,单(σ)键周围的旋转通常是不受限制的,这导致了多种构象的产生。这些不同的形状可以显著影响分子的反应性和与其他物质的相互作用。例如,在有机化学中,原子的空间排列可以影响分子如何适合酶的活性位点,从而影响生化反应的速率。此外,分子内旋转不仅限于简单的有机分子。它在更大、更复杂的结构中也起着至关重要的作用,例如蛋白质和核酸。在蛋白质中,分子内旋转提供的灵活性使得蛋白质的折叠和功能具有动态特性。氨基酸侧链的旋转能力可以导致不同的构象,这对蛋白质的生物活性至关重要。同样,在DNA中,碱基围绕糖-磷酸骨架的旋转有助于双螺旋结构的整体稳定性和功能。然而,尽管分子内旋转对分子灵活性至关重要,但在某些情况下也可能带来挑战。例如,在药物设计中,了解药物分子在其结合位点内的旋转方式可以帮助化学家优化其效能。如果分子具有过多的旋转自由度,可能无法有效结合其靶点,因此需要进行修改以限制其运动。因此,必须在旋转自由度和结合亲和力之间保持微妙的平衡。除了在化学和生物学中的影响外,分子内旋转在材料科学中也具有重要意义。例如,聚合物的机械性能受到其组成单体的旋转动态的影响。通过操纵聚合物链中分子内旋转的程度,科学家可以为特定应用定制材料,从柔性电子产品到耐用建筑材料。总之,分子内旋转是支撑许多分子行为的基本概念。它的影响跨越多个科学学科,突显了分子结构与功能之间的相互联系。深入理解分子内旋转不仅增强了我们对分子动力学的认识,也为药物开发和材料工程等领域的进步铺平了道路。随着研究不断揭示分子相互作用的复杂性,分子内旋转的重要性无疑将继续成为科学知识探索的关键焦点。
相关单词