intersystem crossing
简明释义
系统间交差
英英释义
例句
1.In fluorescent dyes, efficient intersystem crossing (跨系统交叉) can enhance the emission intensity.
在荧光染料中,高效的intersystem crossing (跨系统交叉)可以增强发射强度。
2.The study of intersystem crossing (跨系统交叉) is important for developing new materials for solar cells.
研究intersystem crossing (跨系统交叉)对于开发新型太阳能电池材料非常重要。
3.The process of intersystem crossing (跨系统交叉) is crucial in understanding the behavior of excited states in photochemistry.
在光化学中,intersystem crossing (跨系统交叉)的过程对理解激发态的行为至关重要。
4.Researchers observed that intersystem crossing (跨系统交叉) can lead to different reaction pathways in certain organic compounds.
研究人员观察到,在某些有机化合物中,intersystem crossing (跨系统交叉)可能导致不同的反应途径。
5.Understanding intersystem crossing (跨系统交叉) helps scientists improve the efficiency of light-emitting devices.
理解intersystem crossing (跨系统交叉)有助于科学家提高发光设备的效率。
作文
In the fascinating world of photochemistry, one term that frequently arises is intersystem crossing. This phenomenon plays a crucial role in understanding how molecules interact with light and how energy is transferred within them. To grasp the concept of intersystem crossing, we must first delve into the basics of electronic states and molecular transitions.Molecules exist in various electronic states, which can be classified as singlet and triplet states. In a singlet state, all electrons are paired, resulting in a total spin of zero. Conversely, in a triplet state, two electrons are unpaired, leading to a total spin of one. The transition between these states is not straightforward, as it involves a change in spin multiplicity. This is where intersystem crossing becomes significant.When a molecule absorbs light, it often gets excited from its ground state to a higher electronic state. Typically, this transition occurs between two singlet states. However, due to various interactions, such as spin-orbit coupling, the excited molecule may undergo intersystem crossing to a triplet state. This transition is essential for many photochemical processes, including photosynthesis and phosphorescence.One of the most intriguing aspects of intersystem crossing is its impact on the efficiency of light absorption and energy conversion. For instance, in photosynthesis, plants utilize this process to convert solar energy into chemical energy. When chlorophyll absorbs sunlight, it can experience intersystem crossing, allowing for more efficient energy transfer to reaction centers where it can be utilized for the synthesis of glucose.Moreover, intersystem crossing is pivotal in the field of organic light-emitting diodes (OLEDs). In OLED technology, the emission of light occurs when electrons recombine with holes in a material. By engineering materials that promote intersystem crossing, researchers can enhance the efficiency of light emission, leading to brighter and more energy-efficient displays.Despite its importance, intersystem crossing is a complex process influenced by various factors, including molecular structure, solvent effects, and temperature. Understanding these factors allows scientists to design better materials for applications ranging from solar cells to lighting technologies.In conclusion, intersystem crossing is a fundamental concept in photochemistry that bridges the gap between different electronic states of molecules. Its implications are vast, impacting natural processes like photosynthesis and technological advancements in OLEDs. As research continues to unveil the intricacies of intersystem crossing, we can expect to see further innovations that harness this fascinating phenomenon for practical applications in our daily lives.
跨系统交叉是光化学领域中的一个重要术语,它在理解分子如何与光相互作用以及能量如何在分子内部转移方面起着关键作用。要掌握跨系统交叉的概念,我们首先需要了解电子状态和分子跃迁的基本知识。分子存在于不同的电子状态中,这些状态可以分为单重态和三重态。在单重态中,所有电子都是成对的,总自旋为零。相反,在三重态中,有两个电子未成对,从而导致总自旋为一。这些状态之间的跃迁并不是简单的,因为它涉及自旋多重性的变化。这就是跨系统交叉的重要性所在。当分子吸收光时,它通常会从基态激发到更高的电子状态。通常,这种跃迁发生在两个单重态之间。然而,由于自旋-轨道耦合等各种相互作用,激发的分子可能会经历跨系统交叉,转变为三重态。这种跃迁对许多光化学过程至关重要,包括光合作用和磷光现象。跨系统交叉的一个迷人之处在于它对光吸收和能量转换效率的影响。例如,在光合作用中,植物利用这一过程将太阳能转化为化学能。当叶绿素吸收阳光时,它可能会经历跨系统交叉,从而使能量更有效地传递到反应中心,供合成葡萄糖使用。此外,跨系统交叉在有机发光二极管(OLED)技术中也至关重要。在OLED技术中,当电子与材料中的空穴复合时,会发出光。通过设计促进跨系统交叉的材料,研究人员可以提高光发射的效率,从而实现更明亮和更节能的显示效果。尽管跨系统交叉非常重要,但它是一个复杂的过程,受分子结构、溶剂效应和温度等多种因素的影响。理解这些因素使科学家能够设计出更好的材料,应用于从太阳能电池到照明技术等多个领域。总之,跨系统交叉是光化学中的一个基本概念,它连接了分子的不同电子状态。其影响广泛,涉及自然过程如光合作用和OLED等技术进步。随着研究不断揭示跨系统交叉的复杂性,我们可以期待看到进一步的创新,利用这一迷人现象为我们日常生活中的实际应用服务。
相关单词