infrared spectroscopic analysis
简明释义
红外线分光分析
英英释义
例句
1.In environmental studies, infrared spectroscopic analysis helps in monitoring air quality by identifying pollutants.
在环境研究中,红外光谱分析通过识别污染物帮助监测空气质量。
2.The forensic lab utilized infrared spectroscopic analysis to examine evidence collected from the crime scene.
法医实验室利用红外光谱分析检查从犯罪现场收集的证据。
3.The infrared spectroscopic analysis revealed distinct peaks corresponding to different functional groups in the molecule.
红外光谱分析揭示了与分子中不同官能团对应的明显峰值。
4.By applying infrared spectroscopic analysis, we were able to detect impurities in the pharmaceutical product.
通过应用红外光谱分析,我们能够检测到药品中的杂质。
5.The research team used infrared spectroscopic analysis to identify the chemical composition of the unknown sample.
研究小组使用红外光谱分析来确定未知样品的化学成分。
作文
Infrared spectroscopic analysis is a powerful analytical technique widely used in various scientific fields, including chemistry, biology, and material science. This method involves the interaction of infrared radiation with matter, leading to the absorption of specific wavelengths of light by the molecules present in a sample. The resulting spectrum provides valuable information about the molecular structure, functional groups, and chemical composition of the substance being analyzed. By employing infrared spectroscopic analysis (红外光谱分析), researchers can identify unknown compounds, monitor chemical reactions, and assess the purity of materials. One of the key advantages of infrared spectroscopic analysis (红外光谱分析) is its non-destructive nature, allowing scientists to study samples without altering their physical or chemical properties. This feature is particularly beneficial when dealing with precious or limited samples, such as archaeological artifacts or biological specimens. Additionally, this technique can be performed on solids, liquids, and gases, making it highly versatile. In practice, infrared spectroscopic analysis (红外光谱分析) typically involves the use of an infrared spectrometer, which emits infrared radiation and detects the wavelengths that are absorbed by the sample. The resulting spectrum is plotted as a graph, with the x-axis representing the wavelength (or wavenumber) and the y-axis representing the intensity of absorption. Each peak in the spectrum corresponds to a specific molecular vibration, providing insights into the chemical bonds and functional groups present in the sample. For instance, in organic chemistry, the presence of a carbonyl group (C=O) can be identified by a strong absorption band around 1700 cm-1, while O-H stretching vibrations from alcohols appear around 3200-3600 cm-1. By analyzing these peaks, chemists can deduce the functional groups in a compound, leading to a better understanding of its reactivity and properties. Moreover, infrared spectroscopic analysis (红外光谱分析) is not limited to academic research; it also has practical applications in industries such as pharmaceuticals, food safety, and environmental monitoring. In the pharmaceutical industry, for example, this technique is employed to ensure the quality and consistency of drug formulations by verifying the identity and purity of active ingredients. In food safety, infrared spectroscopic analysis (红外光谱分析) can detect contaminants or adulterants in food products, ensuring consumer safety. Similarly, environmental scientists utilize this method to analyze air and water samples for pollutants, contributing to efforts in pollution control and environmental protection. In conclusion, infrared spectroscopic analysis (红外光谱分析) is an indispensable tool in modern science, offering detailed insights into the molecular characteristics of various substances. Its non-destructive nature, versatility, and wide range of applications make it a preferred choice for researchers and industries alike. As technology continues to advance, the capabilities and applications of infrared spectroscopic analysis (红外光谱分析) are expected to expand, further enhancing our understanding of the world around us.
红外光谱分析是一种强大的分析技术,广泛应用于化学、生物学和材料科学等多个科学领域。这种方法涉及红外辐射与物质的相互作用,导致样品中分子对特定波长的光的吸收。由此产生的光谱提供了有关所分析物质的分子结构、官能团和化学成分的宝贵信息。通过采用红外光谱分析,研究人员可以识别未知化合物、监测化学反应并评估材料的纯度。红外光谱分析的一个主要优点是其非破坏性,使科学家能够在不改变样品的物理或化学性质的情况下研究样品。这一特点在处理珍贵或有限样本时尤为有利,例如考古文物或生物样本。此外,该技术可在固体、液体和气体上进行,使其具有高度的多功能性。在实践中,红外光谱分析通常涉及使用红外光谱仪,该仪器发出红外辐射并检测样品吸收的波长。生成的光谱以图形形式绘制,x轴表示波长(或波数),y轴表示吸收强度。光谱中的每个峰值对应于特定的分子振动,提供有关样品中存在的化学键和官能团的见解。例如,在有机化学中,羰基(C=O)基团的存在可以通过约1700 cm-1处的强吸收带来识别,而醇类的O-H伸缩振动出现在3200-3600 cm-1范围内。通过分析这些峰,化学家可以推断出化合物中的官能团,从而更好地理解其反应性和性质。此外,红外光谱分析不仅限于学术研究;它在制药、食品安全和环境监测等行业也有实际应用。例如,在制药行业,这项技术用于确保药物配方的质量和一致性,通过验证活性成分的身份和纯度。在食品安全方面,红外光谱分析可以检测食品产品中的污染物或掺假物,确保消费者安全。类似地,环境科学家利用该方法分析空气和水样中的污染物,有助于污染控制和环境保护工作。总之,红外光谱分析是现代科学中不可或缺的工具,提供了对各种物质分子特征的详细见解。其非破坏性、多功能性和广泛的应用使其成为研究人员和各行各业的首选。随着技术的不断进步,红外光谱分析的能力和应用预计将进一步扩大,从而增强我们对周围世界的理解。
相关单词