infrared spectrophotometry
简明释义
红外分光光度法
英英释义
例句
1.By employing infrared spectrophotometry, researchers can identify functional groups in organic compounds.
通过采用红外光谱法,研究人员可以识别有机化合物中的官能团。
2.The laboratory uses infrared spectrophotometry to analyze the chemical composition of unknown substances.
实验室使用红外光谱法分析未知物质的化学成分。
3.The environmental lab utilized infrared spectrophotometry to detect pollutants in water samples.
环境实验室利用红外光谱法检测水样中的污染物。
4.Forensic scientists rely on infrared spectrophotometry to analyze trace evidence found at crime scenes.
法医科学家依赖红外光谱法分析犯罪现场发现的微量证据。
5.In quality control, infrared spectrophotometry is essential for verifying the purity of pharmaceutical products.
在质量控制中,红外光谱法对验证药品的纯度至关重要。
作文
Infrared spectrophotometry, or 红外光谱测定法, is a powerful analytical technique used to identify and quantify materials based on their interaction with infrared radiation. This method exploits the fact that different chemical bonds absorb specific frequencies of infrared light, leading to a unique spectral fingerprint for each substance. The significance of 红外光谱测定法 lies in its ability to provide detailed information about molecular structure, functional groups, and even the physical state of a sample.The basic principle of 红外光谱测定法 involves passing infrared light through a sample and measuring the intensity of light that emerges. When the light encounters a molecule, certain wavelengths are absorbed, resulting in a spectrum that displays peaks corresponding to the absorbed frequencies. By analyzing these peaks, chemists can deduce the presence of various functional groups within the molecule. For instance, a sharp peak around 1700 cm⁻¹ typically indicates the presence of a carbonyl group (C=O), while a broad peak around 3200-3600 cm⁻¹ suggests the presence of an -OH group.One of the advantages of 红外光谱测定法 is its non-destructive nature, meaning that samples can often be analyzed without being altered or destroyed. This is particularly useful in fields such as pharmaceuticals, where the integrity of a compound must be maintained. Furthermore, 红外光谱测定法 can be applied to solid, liquid, and gas samples, making it a versatile tool in the laboratory.In addition to qualitative analysis, 红外光谱测定法 can also be employed for quantitative measurements. By using calibration curves and known concentrations of substances, researchers can determine the concentration of unknown samples. This aspect of 红外光谱测定法 is crucial in industries like environmental monitoring, where precise quantification of pollutants is necessary.Moreover, the application of 红外光谱测定法 extends beyond the laboratory. In recent years, portable infrared spectrometers have been developed, allowing for field analysis in real-time. This advancement has significant implications for various sectors, including agriculture, where farmers can assess soil composition and plant health on-site.The versatility and efficiency of 红外光谱测定法 have made it a staple in many scientific disciplines. In forensic science, for example, it can be utilized to analyze substances found at crime scenes, helping to identify unknown drugs or trace materials. Similarly, in food science, 红外光谱测定法 is used to detect adulteration or to ensure quality control by analyzing the composition of food products.In conclusion, 红外光谱测定法 is an invaluable analytical technique that provides insights into the molecular composition of various substances. Its ability to deliver both qualitative and quantitative data, combined with its non-destructive nature, makes it essential in numerous fields, from chemistry and biology to environmental science and industry. As technology continues to advance, the applications of 红外光谱测定法 will likely expand even further, enhancing our understanding of materials and their interactions with light.
红外光谱测定法是一种强大的分析技术,用于根据材料与红外辐射的相互作用来识别和定量材料。这种方法利用不同化学键吸收特定频率的红外光的事实,从而导致每种物质独特的光谱指纹。红外光谱测定法的重要性在于它能够提供有关分子结构、官能团,甚至样品物理状态的详细信息。红外光谱测定法的基本原理是将红外光通过样品,并测量透过后的光强度。当光遇到分子时,某些波长被吸收,导致产生一个光谱,显示出与吸收频率相对应的峰值。通过分析这些峰值,化学家可以推断分子中各种官能团的存在。例如,约1700 cm⁻¹的尖峰通常表明存在羰基(C=O),而约3200-3600 cm⁻¹的宽峰则暗示存在-OH基团。红外光谱测定法的一个优点是其非破坏性,这意味着样品通常可以在不被改变或破坏的情况下进行分析。这在制药等领域尤其重要,因为化合物的完整性必须得到保持。此外,红外光谱测定法可以应用于固体、液体和气体样品,使其成为实验室中的一种多功能工具。除了定性分析,红外光谱测定法还可以用于定量测量。通过使用校准曲线和已知浓度的物质,研究人员可以确定未知样品的浓度。红外光谱测定法的这一方面在环境监测等行业中至关重要,因为精确的污染物定量是必要的。此外,红外光谱测定法的应用超越了实验室。近年来,便携式红外光谱仪的开发使得现场实时分析成为可能。这一进展对农业等各个行业具有重要意义,农民可以现场评估土壤成分和植物健康。红外光谱测定法的多功能性和高效性使其成为许多科学学科的基础。在法医学中,例如,它可以用于分析犯罪现场发现的物质,帮助识别未知药物或痕迹材料。同样,在食品科学中,红外光谱测定法用于检测掺假或确保食品产品的质量控制。总之,红外光谱测定法是一种宝贵的分析技术,可以提供对各种物质分子组成的洞察。它能够提供定性和定量数据,加上其非破坏性,使其在化学、生物学、环境科学和工业等众多领域中必不可少。随着技术的不断进步,红外光谱测定法的应用可能会进一步扩展,增强我们对材料及其与光相互作用的理解。
相关单词