incommensurate structure
简明释义
不相称结构
英英释义
例句
1.In materials science, an incommensurate structure can lead to unique electronic properties that are not found in conventional materials.
在材料科学中,不相称的结构可能导致独特的电子特性,这在传统材料中是不存在的。
2.The presence of an incommensurate structure in the alloy significantly altered its mechanical behavior.
合金中存在的不相称的结构显著改变了其机械行为。
3.The research team discovered an incommensurate structure in the crystal, which made it difficult to analyze its properties.
研究小组在晶体中发现了一个不相称的结构,这使得分析其性质变得困难。
4.Researchers are studying the incommensurate structure of certain organic compounds for potential applications in nanotechnology.
研究人员正在研究某些有机化合物的不相称的结构,以寻求在纳米技术中的潜在应用。
5.The incommensurate structure observed in the superconducting material is crucial for understanding its high-temperature properties.
在超导材料中观察到的不相称的结构对于理解其高温特性至关重要。
作文
In the realm of materials science and crystallography, the term incommensurate structure refers to a specific type of arrangement found in certain crystalline materials. Unlike conventional crystals, which exhibit a periodic and repetitive lattice structure, incommensurate structure describes a scenario where the periodicity of the crystal lattice and the symmetry of the atomic arrangement do not align perfectly. This phenomenon can lead to intriguing properties and behaviors that are not present in commensurate structures. To understand incommensurate structure, one must first grasp the concept of commensurate structures. In a commensurate structure, the periodicity of the lattice matches that of the underlying atomic positions, creating a harmonious and predictable arrangement. For example, in a simple cubic lattice, the atoms are positioned at regular intervals, leading to consistent physical properties. However, when we delve into incommensurate structure, we encounter a more complex situation where this harmony is disrupted. The origins of incommensurate structure can often be traced back to interactions between different types of atoms or molecules within a material. These interactions can cause shifts in the positions of atoms, resulting in a lattice that does not conform to the expected periodicity. For instance, in certain layered materials or complex oxides, the presence of additional elements or varying temperatures can induce incommensurate structure. This leads to a rich variety of physical phenomena, including changes in electrical conductivity, optical properties, and thermal behavior. One of the most fascinating aspects of incommensurate structure is its impact on the material’s overall properties. Materials exhibiting this type of structure can display unique electronic and magnetic characteristics, making them of great interest for various applications. For example, superconductors and ferroelectrics often exhibit incommensurate structure, which can enhance their performance in electronic devices. Researchers are continually exploring how to manipulate these structures to develop novel materials with tailored properties. Moreover, the study of incommensurate structure extends beyond just materials science; it also has implications in fields like condensed matter physics and chemistry. Understanding how these structures form and behave can provide insights into fundamental questions about matter and its interactions. For instance, the discovery of incommensurate structure in certain high-temperature superconductors has opened new avenues for research into quantum mechanics and phase transitions. In conclusion, the exploration of incommensurate structure reveals a complex interplay between atomic arrangements and material properties. As scientists continue to investigate these unique structures, we may uncover new materials that challenge our current understanding and lead to technological advancements. The study of incommensurate structure not only enriches our knowledge of crystallography but also paves the way for innovative applications in various scientific disciplines.
在材料科学和晶体学的领域中,术语非共轭结构指的是某些晶体材料中发现的一种特定排列。与表现出周期性和重复晶格结构的常规晶体不同,非共轭结构描述了一种晶体晶格的周期性与原子排列的对称性不完全对齐的情况。这种现象可能导致一些在共轭结构中不存在的有趣性质和行为。要理解非共轭结构,首先必须掌握共轭结构的概念。在共轭结构中,晶格的周期性与基础原子位置相匹配,形成和谐且可预测的排列。例如,在简单的立方晶格中,原子以规则的间隔排列,导致一致的物理性质。然而,当我们深入研究非共轭结构时,我们会遇到一种更复杂的情况,其中这种和谐被打破。非共轭结构的起源通常可以追溯到材料中不同类型原子或分子之间的相互作用。这些相互作用可能导致原子位置的偏移,从而产生一个不符合预期周期性的晶格。例如,在某些层状材料或复杂氧化物中,额外元素的存在或温度的变化可能诱导出非共轭结构。这导致了丰富多样的物理现象,包括电导率、光学性质和热行为的变化。非共轭结构最迷人的方面之一是其对材料整体性质的影响。表现出这种结构的材料可以显示出独特的电子和磁特性,这使它们在各种应用中备受关注。例如,超导体和铁电体通常表现出非共轭结构,这可以增强它们在电子设备中的性能。研究人员不断探索如何操控这些结构,以开发具有定制性质的新型材料。此外,非共轭结构的研究不仅限于材料科学;它在凝聚态物理学和化学等领域也有重要意义。理解这些结构是如何形成和行为的,可以为有关物质及其相互作用的基本问题提供见解。例如,在某些高温超导体中发现的非共轭结构已为量子力学和相变的研究开辟了新的途径。总之,非共轭结构的探索揭示了原子排列与材料性质之间复杂的相互作用。随着科学家们继续研究这些独特的结构,我们可能会发现新的材料,这些材料挑战我们当前的理解并导致技术进步。非共轭结构的研究不仅丰富了我们对晶体学的知识,也为各个科学学科中的创新应用铺平了道路。
相关单词