photoelastic
简明释义
英[/ˌfoʊtoʊɪˈlæstɪk/]美[/ˌfoʊtoʊɪˈlæstɪk/]
adj. 光测弹性的
n. 光弹性
英英释义
Relating to the phenomenon in which certain materials exhibit changes in their optical properties when subjected to mechanical stress. | 与某些材料在受到机械应力时光学性质变化的现象相关。 |
单词用法
同义词
反义词
不透明的 | The material is opaque, preventing any light from passing through. | 这种材料是不透明的,阻止任何光线通过。 | |
非弹性的 | Non-elastic materials do not return to their original shape after deformation. | 非弹性材料在变形后不会恢复到原来的形状。 |
例句
1.A double photoelastic coating method for shell stress measurement based on the principle of similarity is suggested.
本文从相似关系着手提出了一种测定薄壳应力的光弹性贴片方法。
2.In this paper, we establish the vector model of polarized light, give out the transformation matrices of the optical elements in photoelastic experiment.
本文建立了偏振光的向量模型,给出了光弹实验中光学元件的变换矩阵。
3.This paper studies the fracture mechanics of piston crown crack by means of finite element method and photoelastic method.
本文应用有限元法和光弹性试验对活塞顶的裂纹进行断裂力学分析。
4.Bireflectance film based on the photoelastic effect is a kind of anisotropic high reflection coating.
弹光效应双反射膜是一种各向异性的高反射膜。
5.Based on the calculation of multi-image, this paper achieves the modularized design of photoelastic auto processing program.
本文以多幅图像计算为框架实现了光弹图自动处理程序的模块化设计。
6.Method We used the biomechanics method of photoelastic experiment.
方法采用生物力学光弹性实验方法。
7.The study is helpful to photoelastic analysis on oblate extrusion pipe.
此项研究结果可为扁挤压筒的光弹性分析提供帮助。
8.Methods three dimensional photoelastic method.
方法三维光弹冻结切片法。
9.The photoelastic 光弹性 analysis revealed unexpected stress concentrations.
这项光弹性分析揭示了意想不到的应力集中。
10.In the lab, we observed the photoelastic 光弹性 effects under different loading conditions.
在实验室中,我们观察了不同加载条件下的光弹性效应。
11.The photoelastic 光弹性 materials helped visualize the internal stresses in the component.
这些光弹性材料帮助可视化了组件内部的应力。
12.Using photoelastic 光弹性 techniques, we were able to identify weak points in the design.
通过使用光弹性技术,我们能够识别设计中的薄弱点。
13.The engineer used a photoelastic 光弹性 model to analyze stress distribution in the bridge.
工程师使用了一个光弹性模型来分析桥梁中的应力分布。
作文
The study of materials and their properties is a fascinating field that has significant implications in engineering and science. One concept that has gained attention in this area is photoelastic, which refers to the optical behavior of materials that exhibit changes in their refractive index when subjected to mechanical stress. This property allows engineers to visualize stress distribution in transparent materials, making it an invaluable tool for analyzing structural integrity. In practical applications, photoelastic materials are often used in experimental mechanics to create models that can demonstrate how real-world structures behave under load. For instance, a common experiment involves using a photoelastic model of a bridge or beam, where polarized light is passed through the model. As the model is loaded, stress patterns appear as colorful fringes, allowing researchers to see where the highest stresses occur. This visual representation is not only informative but also helps in understanding complex stress states that would be difficult to analyze mathematically. The use of photoelastic techniques extends beyond academic research. In industries such as aerospace, automotive, and civil engineering, understanding the stress distribution in components is crucial for ensuring safety and performance. Engineers utilize photoelastic analysis to optimize designs, prevent failures, and enhance the durability of products. By incorporating photoelastic methods into the design process, companies can save time and resources by identifying potential issues early in development. Moreover, the principles behind photoelastic behavior are rooted in the fundamental concepts of light and materials science. When a transparent material becomes stressed, its molecular structure alters, leading to variations in how light passes through it. This phenomenon is known as birefringence, where two different refractive indices are present within the material. The result is that light splits into two beams, each traveling at different speeds, which creates the colorful patterns observed in photoelastic experiments. As technology advances, the applications of photoelastic materials continue to expand. Researchers are exploring new types of photoelastic polymers that can be used in various fields, from biomedical devices to microelectronics. These innovations pave the way for more sophisticated analysis techniques that can provide deeper insights into material behavior under various conditions. In conclusion, the concept of photoelastic materials represents a critical intersection of physics, engineering, and materials science. Understanding this phenomenon not only enhances our ability to analyze and predict material behavior but also drives innovation across multiple industries. As we continue to explore the capabilities of photoelastic techniques, we unlock new possibilities for safer and more efficient designs in the future. In summary, photoelastic (光弹性) is an essential concept in understanding how materials respond to stress and how we can visualize these responses effectively. It plays a vital role in ensuring the safety and efficiency of engineering designs, making it a key area of study for engineers and researchers alike.
材料及其性质的研究是一个迷人的领域,对工程和科学有着重要的影响。一个在这一领域引起关注的概念是photoelastic(光弹性),它指的是当材料受到机械应力时,其折射率发生变化的光学行为。这种特性使工程师能够可视化透明材料中的应力分布,使其成为分析结构完整性的宝贵工具。在实际应用中,photoelastic材料常用于实验力学中,创建可以展示现实世界结构在负载下如何表现的模型。例如,一个常见的实验涉及使用photoelastic桥梁或梁的模型,经过偏振光照射该模型。当模型受到加载时,应力模式以彩色条纹的形式出现,使研究人员能够看到最高应力发生的地方。这种可视化表示不仅信息丰富,还帮助理解复杂的应力状态,这些状态在数学上难以分析。photoelastic技术的使用超越了学术研究。在航空航天、汽车和土木工程等行业,理解组件中的应力分布对确保安全和性能至关重要。工程师利用photoelastic分析来优化设计、预防故障并增强产品的耐用性。通过将photoelastic方法纳入设计过程,公司可以通过在开发早期识别潜在问题来节省时间和资源。此外,photoelastic行为背后的原理根植于光学和材料科学的基本概念。当透明材料受到应力时,其分子结构会发生变化,导致光通过材料的方式发生变化。这种现象被称为双折射,其中材料内部存在两个不同的折射率。结果是光分裂成两束,每束以不同的速度传播,从而产生在photoelastic实验中观察到的彩色图案。随着技术的进步,photoelastic材料的应用继续扩展。研究人员正在探索新型photoelastic聚合物,这些聚合物可以用于从生物医学设备到微电子学的各个领域。这些创新为更复杂的分析技术开辟了道路,可以提供对材料在各种条件下行为的更深刻的见解。总之,photoelastic材料的概念代表了物理学、工程学和材料科学的关键交汇点。理解这一现象不仅增强了我们分析和预测材料行为的能力,还推动了多个行业的创新。随着我们继续探索photoelastic技术的能力,我们为未来更安全、更高效的设计解锁了新的可能性。总之,photoelastic(光弹性)是理解材料如何响应应力以及我们如何有效地可视化这些响应的基本概念。它在确保工程设计的安全性和效率方面发挥着至关重要的作用,使其成为工程师和研究人员共同研究的关键领域。