becquerel

简明释义

[ˈbekərel][ˈbekərel]

n. 贝可勒尔,贝可(放射性活度单位)

英英释义

The becquerel (symbol: Bq) is the SI unit of radioactivity, defined as one disintegration per second.

贝可勒尔(符号:Bq)是国际单位制中的放射性单位,定义为每秒一次衰变。

单词用法

one becquerel

一个贝可勒尔

millibecquerel

毫贝可勒尔

kilobecquerel

千贝可勒尔

radioactive decay measured in becquerels

以贝可勒尔测量的放射性衰变

background radiation levels in becquerels

以贝可勒尔计的背景辐射水平

同义词

curie

居里

The radioactivity of the sample was measured in becquerels.

样本的放射性以贝克勒尔为单位进行测量。

gray

戈瑞

One curie is equivalent to 37 billion becquerels.

一居里等于370亿贝克勒尔。

sievert

西弗特

Radiation doses are often expressed in sieverts.

辐射剂量通常以西弗特为单位表示。

反义词

null

The radiation level is currently at null, indicating no activity.

辐射水平目前为无,表示没有活动。

zero

In this area, the radiation count is zero, ensuring safety.

在这个区域,辐射计数为零,确保安全。

例句

1.One Becquerel corresponds to the transformation (disintegration) of one atomic nucleus per second.

1贝可相当于每秒转换(分解)1个原子核。

2.Based on the results of this research, Marie Curie received her Doctorate of Science, and in 1903 Marie and Pierre shared with Becquerel the Nobel Prize for Physics for the discovery of radioactivity.

基于这项研究的结果,玛丽·居里获得了理学博士学位,1903年,玛丽和皮埃尔与贝克勒尔共同获得了诺贝尔物理学奖,以表彰他们发现了放射性物质。

3.With her husband, Pierre Curie, and Henri Becquerel, she was awarded the 1903 Nobel Prize for Physics, and was then sole winner of the 1911 Nobel Prize for Chemistry.

1903年,居里夫人和她的丈夫皮埃尔·居里以及亨利·贝克勒尔共同获得了诺贝尔物理学奖。1911年,她又独自获得了诺贝尔化学奖。

4.The Nobel Committee investigated the research done by Becquerel and both of the Curies.

诺贝尔奖金委员会调查了此项研究是由贝克雷尔和居里夫妇共同完成的。

5."In 1839, French scientist Edmund Becquerel discovered (How Solar)" the photoelectric effect.

在1839年,法国科学家埃德蒙·贝克勒尔发现了(太阳能)光电效应。

6.In 1896, Henri Becquerel had inadvertently discovered radioactivity when he left some uranium ore in a drawer on top of an undeveloped photographic plate, on which the uranium left a "shadow."

1896年,贝克勒尔无意中发现了放射性物质,当他在一个抽屉里未显影的感光板上面留下一些铀矿后,感光板上留下了一个影子。

7.In 1896, Henri Becquerel had inadvertently discovered radioactivity when he left some uranium ore in a drawer on top of an undeveloped photographic plate, on which the uranium left a "shadow."

1896年,贝克勒尔无意中发现了放射性物质,当他在一个抽屉里未显影的感光板上面留下一些铀矿后,感光板上留下了一个影子。

8.The Curies and scientist Henri Becquerel won a Nobel Prize for Physics in 1903 for discovering radioactivity.

居里夫妇和科学家亨利·贝克勒尔因发现了放射能而获得了1903年的诺贝尔物理学奖。

9.In nuclear medicine, a dose of 1,000 贝克勒尔 is often used for diagnostic imaging.

在核医学中,通常使用1,000 贝克勒尔的剂量进行诊断成像.

10.A typical smoke detector contains a radioactive source emitting 0.5 贝克勒尔.

一个典型的烟雾探测器包含一个发出0.5 贝克勒尔的放射源.

11.The radioactivity of the sample was measured at 150 贝克勒尔.

样本的放射性被测量为150 贝克勒尔.

12.The safety limit for exposure to radioactive materials is set at 10 贝克勒尔 per kilogram.

对放射性材料的安全暴露限值设定为每千克10 贝克勒尔.

13.The environmental monitoring station recorded background radiation levels of 20 贝克勒尔 per cubic meter.

环境监测站记录的背景辐射水平为每立方米20 贝克勒尔.

作文

The concept of radioactivity has fascinated scientists and the general public alike for over a century. One of the fundamental units used to measure radioactivity is the becquerel, which is defined as one disintegration per second. This unit was named after Henri Becquerel, who discovered radioactivity in 1896 while studying phosphorescent materials. The becquerel is a crucial measurement in various fields, including nuclear physics, medicine, and environmental science. Understanding this unit is essential for anyone working with radioactive materials or studying their effects on health and the environment.In the field of medicine, for example, the becquerel is used to quantify the amount of radioactive isotopes in diagnostic imaging and treatment. Radiopharmaceuticals, which are compounds that contain radioactive isotopes, are administered to patients for imaging or therapeutic purposes. The dosage is often expressed in becquerels, allowing healthcare professionals to determine safe and effective levels for patient care. This application underscores the importance of precise measurements in ensuring patient safety and treatment efficacy.Environmental scientists also utilize the becquerel to monitor radiation levels in natural and contaminated environments. After nuclear accidents, such as the Chernobyl disaster in 1986 or the Fukushima Daiichi incident in 2011, measuring radiation in becquerels helps assess the extent of contamination and its potential impact on public health and ecosystems. By understanding the concentration of radioactive materials in soil, water, and air, scientists can develop strategies to mitigate risks and protect communities.The significance of the becquerel extends beyond scientific research and medical applications; it also plays a role in regulatory frameworks governing the use of radioactive materials. National and international organizations, such as the International Atomic Energy Agency (IAEA), establish guidelines for acceptable levels of radiation exposure based on measurements in becquerels. These regulations help ensure that industries using radioactive materials operate safely and responsibly, minimizing risks to workers and the public.Moreover, public awareness of radioactivity and its measurement in becquerels is crucial in today’s world, where nuclear energy is increasingly being considered as a sustainable energy source. As countries seek to reduce carbon emissions and combat climate change, the role of nuclear power may expand. Understanding the implications of radioactivity and the importance of the becquerel will be vital for informed public discourse on energy policies and safety measures.In conclusion, the becquerel serves as a fundamental unit of measurement in the study of radioactivity. Its applications span across various disciplines, from medicine to environmental science and regulatory practices. As we continue to explore the complexities of radioactivity and its effects, the becquerel will remain an essential tool for researchers, healthcare professionals, and policymakers alike. By fostering a deeper understanding of this unit, we can better navigate the challenges and opportunities presented by radioactive materials in our society.

放射性概念吸引了科学家和公众的关注,已有一个多世纪。用于测量放射性的基本单位之一是贝克勒尔,它被定义为每秒一次衰变。该单位以亨利·贝克勒尔的名字命名,他于1896年在研究磷光材料时发现了放射性。贝克勒尔在核物理、医学和环境科学等多个领域都是一个至关重要的测量单位。理解这个单位对任何与放射性材料打交道或研究其对健康和环境影响的人来说都是至关重要的。例如,在医学领域,贝克勒尔用于量化诊断成像和治疗中放射性同位素的数量。放射性药物是含有放射性同位素的化合物,通常用于成像或治疗目的。剂量通常以贝克勒尔为单位表示,使医疗专业人员能够确定患者护理的安全有效水平。这一应用突显了精确测量在确保患者安全和治疗效果中的重要性。环境科学家也利用贝克勒尔来监测自然和受污染环境中的辐射水平。在核事故发生后,例如1986年的切尔诺贝利灾难或2011年的福岛第一核电站事件,测量贝克勒尔中的辐射有助于评估污染程度及其对公众健康和生态系统的潜在影响。通过了解土壤、水和空气中放射性物质的浓度,科学家可以制定减轻风险和保护社区的策略。贝克勒尔的重要性不仅限于科学研究和医学应用;它在监管框架中也发挥着作用,这些框架管理着放射性材料的使用。国家和国际组织,如国际原子能机构(IAEA),根据贝克勒尔的测量建立可接受的辐射暴露水平的指南。这些规定有助于确保使用放射性材料的行业安全和负责任地运营,最大限度地减少对工人和公众的风险。此外,公众对放射性及其在贝克勒尔中的测量的认识在当今世界至关重要,核能越来越被视为一种可持续能源来源。随着各国寻求减少碳排放并应对气候变化,核电的角色可能会扩大。理解放射性及其影响的含义以及贝克勒尔的重要性,对于推动关于能源政策和安全措施的知情公众讨论至关重要。总之,贝克勒尔作为放射性研究的基本测量单位,其应用跨越多个学科,从医学到环境科学再到监管实践。随着我们继续探索放射性的复杂性及其影响,贝克勒尔将继续成为研究人员、医疗专业人士和政策制定者的重要工具。通过加深对这一单位的理解,我们可以更好地应对社会中放射性材料带来的挑战和机遇。