geometric isomerism
简明释义
几何异构性
英英释义
例句
1.Chemists often explore geometric isomerism 几何异构现象 to predict the behavior of molecules in reactions.
化学家经常探讨geometric isomerism 几何异构现象以预测分子在反应中的行为。
2.In certain cases, geometric isomerism 几何异构现象 can lead to significant differences in biological activity.
在某些情况下,geometric isomerism 几何异构现象可能导致生物活性上的显著差异。
3.The presence of geometric isomerism 几何异构现象 in a compound can affect its melting and boiling points.
化合物中存在的geometric isomerism 几何异构现象可以影响其熔点和沸点。
4.Students learn about geometric isomerism 几何异构现象 in their chemistry classes to better understand molecular geometry.
学生们在化学课上学习geometric isomerism 几何异构现象以更好地理解分子几何结构。
5.The study of geometric isomerism 几何异构现象 in organic compounds is essential for understanding their properties.
有机化合物中对geometric isomerism 几何异构现象的研究对于理解其性质至关重要。
作文
Geometric isomerism, also known as cis-trans isomerism, is a fascinating concept in the field of chemistry that deals with the spatial arrangement of atoms within a molecule. This type of isomerism occurs when compounds have the same molecular formula but differ in the arrangement of their atoms in space. The distinct configurations arise due to the restricted rotation around a double bond or a ring structure, which leads to different physical and chemical properties among the isomers. Understanding geometric isomerism (几何异构现象) is crucial for chemists because it can significantly influence the behavior of molecules in various reactions and biological processes.To illustrate this concept, let’s consider the simplest example: 2-butene. It has two geometric isomers: cis-2-butene and trans-2-butene. In the cis isomer, the two methyl groups are on the same side of the double bond, while in the trans isomer, they are on opposite sides. This difference in arrangement results in distinct physical properties; for instance, cis-2-butene has a higher boiling point compared to trans-2-butene due to increased polarity in the cis configuration. Such differences underscore the importance of geometric isomerism (几何异构现象) in understanding molecular interactions and behaviors.Moreover, geometric isomerism (几何异构现象) is not limited to alkenes. It can also occur in cyclic compounds, where the rigidity of the ring structure prevents free rotation of bonds. For example, in cyclohexane derivatives, substituents can be positioned either on the same side (cis) or on opposite sides (trans) of the ring. These configurations can dramatically affect the stability and reactivity of the compounds, showcasing how geometric isomerism (几何异构现象) plays a vital role in organic chemistry.The implications of geometric isomerism (几何异构现象) extend beyond simple chemistry; they are particularly significant in the realm of biochemistry and pharmacology. Many biological molecules, such as hormones and enzymes, exhibit geometric isomerism, which can affect their function and interaction with biological receptors. For instance, the hormone estradiol exists as two geometric isomers, and only one of them can effectively bind to its receptor. This specificity highlights the importance of geometric isomerism (几何异构现象) in drug design, where the efficacy of a pharmaceutical compound can hinge on its geometric configuration.In conclusion, geometric isomerism (几何异构现象) is a fundamental concept in chemistry that illustrates how the arrangement of atoms can lead to varying properties and functions of molecules. From simple hydrocarbons to complex biological systems, the influence of geometric isomerism (几何异构现象) is profound. By studying these isomers, scientists can gain deeper insights into molecular behavior, which is essential for advancements in fields such as materials science, pharmaceuticals, and environmental chemistry. Therefore, a thorough understanding of geometric isomerism (几何异构现象) is not only academically enriching but also practically valuable in numerous applications.
几何异构现象,也称为顺式-反式异构现象,是化学领域中的一个迷人概念,涉及分子中原子的空间排列。这种异构现象发生在化合物具有相同的分子式但在空间中原子的排列不同的情况下。由于双键或环结构周围的旋转受限,导致异构体之间的不同构型,这会在物理和化学性质上产生显著差异。理解几何异构现象(geometric isomerism)对化学家至关重要,因为它可以显著影响分子在各种反应和生物过程中的行为。为了说明这一概念,让我们考虑最简单的例子:2-丁烯。它有两个几何异构体:顺式-2-丁烯和反式-2-丁烯。在顺式异构体中,两个甲基在双键的同一侧,而在反式异构体中,它们则位于两侧。这种排列上的差异导致物理性质的不同;例如,顺式-2-丁烯的沸点高于反式-2-丁烯,因为顺式构型的极性更强。这些差异突显了几何异构现象(geometric isomerism)在理解分子相互作用和行为中的重要性。此外,几何异构现象(geometric isomerism)不仅限于烯烃。它也可以发生在环状化合物中,其中环结构的刚性阻止了键的自由旋转。例如,在环己烷衍生物中,取代基可以位于环的同一侧(顺式)或相对侧(反式)。这些构型可以显著影响化合物的稳定性和反应性,展示了几何异构现象(geometric isomerism)在有机化学中的重要作用。几何异构现象(geometric isomerism)的影响不仅限于简单的化学;在生物化学和药理学领域尤为重要。许多生物分子,如激素和酶,表现出几何异构现象,这可能会影响它们的功能和与生物受体的相互作用。例如,激素雌二醇存在两种几何异构体,只有一种能够有效结合其受体。这种特异性突显了几何异构现象(geometric isomerism)在药物设计中的重要性,其中药物化合物的效能可能依赖于其几何构型。总之,几何异构现象(geometric isomerism)是化学中的一个基本概念,说明了原子的排列如何导致分子的不同性质和功能。从简单的烃到复杂的生物系统,几何异构现象(geometric isomerism)的影响深远。通过研究这些异构体,科学家可以深入了解分子行为,这对于材料科学、药物开发和环境化学等领域的进步至关重要。因此,彻底理解几何异构现象(geometric isomerism)不仅在学术上具有丰富性,而且在众多应用中也具有实际价值。
相关单词