orthogonal
简明释义
adj. [数] 正交的;直角的
n. 正交直线
英英释义
单词用法
正交试验 | |
正交试验 |
同义词
垂直的 | 这两条线是相互垂直的。 | ||
独立的 | 这些变量在分析中是独立的。 | ||
无关的 | 结果与初始假设无关。 |
反义词
平行的 | The two lines are parallel, meaning they will never intersect. | 这两条线是平行的,意味着它们永远不会相交。 | |
非正交的 | In non-orthogonal systems, the axes do not meet at right angles. | 在非正交系统中,坐标轴不在直角处相交。 |
例句
1.When adding assets to the repository the BPM products use predefined tags for orthogonal searches across asset types and communities.
在存储库中添加资产时,BPM产品使用预定义的标签,这些标签支持跨资产类型和社区的正交搜索。
2.Decision tables provide compact visualizations of orthogonal conditions.
决策表可提供正交条件的精简可视化表示。
我认为两方面的问题是正交的。
4.If we use an orthogonal axis, the characters can \ \ \ 't dance.
若我们使用正交的轴线,字符就不会跳动了。
5.Orthogonal persistence simplifies persistence even further by automating the entire storage process.
正交持久性(orthogonal persistence)通过自动化整个存储过程进一步简化了持久性。
6.Methods: Orthogonal design and analysis of variance were used.
应用正交设计实验方法和方差分析。
7.Further, these three solutions are all orthogonal to each other.
此外,这三个解全都是互相正交的。
8.In computer graphics, using orthogonal 正交的 projections helps maintain the shape of objects.
在计算机图形学中,使用orthogonal 正交的投影有助于保持物体的形状。
9.In machine learning, orthogonal 正交的 features can help improve model performance.
在机器学习中,orthogonal 正交的特征可以帮助提高模型性能。
10.The two lines are orthogonal 正交的 to each other, intersecting at a right angle.
这两条线是相互orthogonal 正交的,以直角相交。
11.In statistics, two variables are considered orthogonal 正交的 if they are uncorrelated.
在统计学中,如果两个变量不相关,则认为它们是orthogonal 正交的。
12.The design of the experiment was orthogonal 正交的, allowing for independent analysis of each factor.
实验的设计是orthogonal 正交的,允许对每个因素进行独立分析。
作文
In the field of mathematics and computer science, the term orthogonal is frequently used to describe concepts that are independent or uncorrelated. This idea can be illustrated through various applications, such as in vector spaces, where two vectors are considered orthogonal if their dot product equals zero. This means that they are at right angles to each other in a multi-dimensional space, providing a clear geometric interpretation of independence. In practical terms, when two vectors are orthogonal, they do not influence one another, which allows for simpler calculations and clearer analysis in various scientific fields.Understanding the concept of orthogonal is crucial not only in mathematics but also in statistics and data analysis. For instance, in regression analysis, it is beneficial to have predictor variables that are orthogonal to each other. This ensures that the effect of one variable on the outcome is not confounded by the others, leading to more accurate and interpretable results. When variables are orthogonal, the model can isolate the impact of each variable effectively, allowing researchers to draw clearer conclusions from their data.Furthermore, the principle of orthogonal design extends into the realm of engineering, particularly in signal processing. Engineers often utilize orthogonal signals to minimize interference and maximize clarity in communication systems. By ensuring that different signals are orthogonal, engineers can transmit multiple signals over the same channel without them affecting each other, thereby enhancing the efficiency of data transmission.In the context of software development, the concept of orthogonal design can be applied to system architecture. An orthogonal architecture allows different components of a software system to operate independently, meaning changes in one module do not necessitate changes in others. This modular approach fosters maintainability and scalability, as developers can update or replace components without disrupting the entire system.Moreover, the idea of orthogonal thinking can be applied in creative problem-solving and innovation. When brainstorming solutions, considering orthogonal ideas—those that are unrelated or come from different perspectives—can lead to novel approaches and breakthroughs. By stepping outside conventional thought patterns and exploring orthogonal avenues, individuals and teams can unlock new possibilities and enhance their creativity.In summary, the term orthogonal encapsulates the notion of independence and non-interference across various domains, from mathematics to engineering and creative thinking. By understanding and applying the principles of orthogonal relationships, we can improve our analytical capabilities, enhance our designs, and foster innovation. The concept serves as a powerful tool for navigating complexities in both theoretical and practical applications, ultimately leading to clearer insights and more effective solutions in diverse fields.
在数学和计算机科学领域,术语orthogonal经常用于描述独立或不相关的概念。这个思想可以通过各种应用来说明,例如在向量空间中,当两个向量的点积等于零时,它们被认为是orthogonal的。这意味着它们在多维空间中彼此成直角,为独立性提供了明确的几何解释。在实际操作中,当两个向量是orthogonal的时,它们不会相互影响,这使得在各个科学领域的计算更简单,分析更清晰。理解orthogonal的概念不仅在数学中至关重要,而且在统计学和数据分析中也同样重要。例如,在回归分析中,拥有相互orthogonal的预测变量是有益的。这确保了一个变量对结果的影响不会被其他变量混淆,从而导致更准确和可解释的结果。当变量是orthogonal的时,模型可以有效地隔离每个变量的影响,使研究人员能够从数据中得出更清晰的结论。此外,orthogonal设计的原则扩展到工程领域,特别是在信号处理方面。工程师通常利用orthogonal信号来最小化干扰并最大化通信系统的清晰度。通过确保不同信号是orthogonal的,工程师可以在同一信道上传输多个信号,而不会相互影响,从而提高数据传输的效率。在软件开发的背景下,orthogonal设计的概念可以应用于系统架构。orthogonal架构允许软件系统的不同组件独立运行,这意味着一个模块的变化不需要改变其他模块。这种模块化的方法促进了可维护性和可扩展性,因为开发人员可以在不干扰整个系统的情况下更新或替换组件。此外,orthogonal思维的理念可以应用于创造性问题解决和创新。在头脑风暴解决方案时,考虑orthogonal的想法——那些无关的或来自不同视角的想法——可以导致新颖的方法和突破。通过跳出常规思维模式,探索orthogonal的途径,个人和团队可以解锁新的可能性,增强他们的创造力。总之,术语orthogonal概括了在各个领域(从数学到工程和创造性思维)中独立性和非干扰的概念。通过理解和应用orthogonal关系的原则,我们可以改善我们的分析能力,增强我们的设计,并促进创新。这个概念作为一种强大的工具,用于导航理论和实践应用中的复杂性,最终在不同领域带来更清晰的见解和更有效的解决方案。