flow birefringence

简明释义

怜双折射

英英释义

Flow birefringence refers to the optical phenomenon observed in certain materials when they are subjected to shear or flow, resulting in a difference in refractive indices along different directions.

流动双折射是指在某些材料受到剪切或流动作用时观察到的光学现象,导致在不同方向上的折射率存在差异。

例句

1.Researchers observed flow birefringence 流动双折射 when analyzing the behavior of liquid crystals under shear stress.

研究人员在分析液晶在剪切应力下的行为时观察到了流动双折射 流动双折射

2.The phenomenon of flow birefringence 流动双折射 is commonly used in the characterization of complex fluids.

流动双折射 流动双折射现象常用于复杂流体的表征。

3.The study of flow birefringence 流动双折射 in polymer solutions can help us understand their rheological properties.

对聚合物溶液中流动双折射 流动双折射的研究可以帮助我们理解它们的流变学特性。

4.Understanding flow birefringence 流动双折射 is essential for optimizing the manufacturing process of optical fibers.

理解流动双折射 流动双折射对于优化光纤制造过程至关重要。

5.In the context of biophysics, flow birefringence 流动双折射 can provide insights into protein folding dynamics.

在生物物理学的背景下,流动双折射 流动双折射可以提供对蛋白质折叠动态的洞察。

作文

In the field of materials science and engineering, understanding the properties of materials under various conditions is crucial for developing new technologies. One fascinating phenomenon that has garnered much attention is flow birefringence (流动双折射). This term refers to the optical property of materials that exhibit different refractive indices when subjected to stress or flow. It is particularly significant in the study of polymers and biological fluids, where the alignment of molecular chains can greatly influence the material's behavior.When a material flows, such as during the processing of polymer melts or biological fluids in motion, the molecules within the material tend to align in the direction of flow. This alignment leads to anisotropic behavior, meaning that the material exhibits different physical properties in different directions. The resulting flow birefringence can be observed using polarized light microscopy, where the sample appears to change color or intensity depending on its orientation relative to the light source. This change provides valuable insights into the internal structure and dynamics of the material.The significance of flow birefringence extends beyond academic research; it has practical applications in various industries. For instance, in the polymer industry, understanding how materials behave under flow conditions can help optimize processing techniques, leading to better product quality and performance. By analyzing flow birefringence, engineers can determine the best processing parameters to achieve desired material properties, such as strength, flexibility, and durability.Moreover, in the biomedical field, flow birefringence plays a critical role in understanding the behavior of biological fluids, such as blood or synovial fluid. These fluids are essential for numerous bodily functions, and their flow characteristics can impact health and disease states. By studying the flow birefringence of these fluids, researchers can gain insights into their viscosity and shear-thinning behavior, which are important for diagnosing and treating various medical conditions.In addition to its practical applications, flow birefringence also serves as a powerful tool for fundamental research. Scientists can use this property to investigate the molecular dynamics of materials at a microscopic level. By applying shear stress to a sample and observing the resulting birefringence, researchers can infer information about molecular orientation, chain entanglement, and relaxation processes. This knowledge is vital for the development of advanced materials with tailored properties for specific applications.In conclusion, flow birefringence (流动双折射) is a key concept in materials science that bridges the gap between theoretical research and practical applications. Its ability to reveal the internal structure and dynamics of materials under flow conditions makes it an invaluable tool for engineers and scientists alike. As we continue to explore the complexities of materials and their behaviors, understanding phenomena like flow birefringence will undoubtedly lead to innovations that enhance our technological capabilities and improve our quality of life.

在材料科学和工程领域,理解材料在各种条件下的特性对于开发新技术至关重要。一个引人入胜的现象是流动双折射flow birefringence)。这个术语指的是材料在受到应力或流动时表现出不同折射率的光学特性。它在聚合物和生物液体的研究中尤为重要,因为分子链的排列会极大地影响材料的行为。当材料流动时,例如在聚合物熔体加工或生物液体运动过程中,材料内部的分子会趋向于沿流动方向排列。这种排列导致各向异性行为,意味着材料在不同方向上表现出不同的物理特性。通过偏振光显微镜可以观察到随之产生的流动双折射,样品的颜色或强度会根据其相对于光源的方向而变化。这种变化提供了对材料内部结构和动态的重要见解。流动双折射的重要性不仅限于学术研究;它在各个行业中都有实际应用。例如,在聚合物行业,理解材料在流动条件下的行为可以帮助优化加工技术,从而提高产品质量和性能。通过分析流动双折射,工程师可以确定实现所需材料特性的最佳加工参数,例如强度、柔韧性和耐久性。此外,在生物医学领域,流动双折射在理解生物液体(如血液或滑液)的行为中发挥着关键作用。这些液体对许多身体功能至关重要,其流动特性可能影响健康和疾病状态。通过研究这些液体的流动双折射,研究人员可以深入了解其粘度和剪切稀化行为,这对诊断和治疗各种医疗状况非常重要。除了其实际应用外,流动双折射也是基础研究的强大工具。科学家可以利用这一特性在微观层面上研究材料的分子动力学。通过对样品施加剪切应力并观察随之产生的双折射,研究人员可以推断出有关分子取向、链缠结和松弛过程的信息。这些知识对于开发具有特定应用的定制材料至关重要。总之,流动双折射flow birefringence)是材料科学中的一个关键概念,它架起了理论研究与实际应用之间的桥梁。其揭示材料在流动条件下内部结构和动态的能力,使其成为工程师和科学家不可或缺的工具。随着我们继续探索材料及其行为的复杂性,理解像流动双折射这样的现象无疑将引领我们创新,提升我们的技术能力,提高我们的生活质量。

相关单词

birefringence

birefringence详解:怎么读、什么意思、用法