equatorial bond
简明释义
平伏键
英英释义
例句
1.The equatorial bond (赤道键) in cyclohexane results in lower steric strain compared to axial bonds.
环己烷中的equatorial bond(赤道键)相比于轴向键导致较低的立体排斥应变。
2.The stability of a chair conformation is largely due to the presence of equatorial bonds (赤道键) that minimize steric hindrance.
椅式构象的稳定性主要得益于存在的equatorial bonds(赤道键),它们最小化了立体阻碍。
3.In molecular geometry, the presence of an equatorial bond (赤道键) allows for a more stable arrangement of atoms around the central atom.
在分子几何中,存在一个equatorial bond(赤道键)可以使中心原子周围的原子排列更加稳定。
4.In the case of substituted cyclohexanes, the orientation of substituents in equatorial bonds (赤道键) is preferred for stability.
在取代环己烷的情况下,取代基在equatorial bonds(赤道键)中的取向是优选的,以提高稳定性。
5.When analyzing the structure of a molecule, identifying the equatorial bond (赤道键) can help predict its reactivity.
在分析分子的结构时,识别equatorial bond(赤道键)可以帮助预测其反应性。
作文
In the realm of chemistry, understanding molecular structures is crucial for grasping how substances interact with one another. One key aspect of these structures is the type of bonds that hold atoms together. Among these bonds, the term equatorial bond refers to a specific arrangement in certain molecular geometries, particularly in cyclic compounds like cyclohexane. This bond occurs when substituents on a ring are positioned parallel to the plane of the ring, as opposed to being axial, which means they are oriented perpendicular to the plane. The significance of the equatorial bond lies in its influence on the stability and reactivity of molecules. For example, in cyclohexane, substituents that occupy equatorial positions experience less steric hindrance compared to those in axial positions. This is due to the fact that axial substituents can lead to interactions known as 1,3-diaxial interactions, where the axial groups on the same side of the ring create repulsive forces that destabilize the molecule. Therefore, when analyzing the conformations of cyclohexane derivatives, chemists often prefer the equatorial arrangement for larger substituents to minimize these unfavorable interactions. Furthermore, the concept of equatorial bond extends beyond cyclohexane. In many polycyclic compounds and even in larger organic molecules, the positioning of substituents—whether they are equatorial or axial—can significantly affect the compound's physical and chemical properties. For instance, the solubility, boiling point, and reactivity of a compound can all be influenced by the spatial arrangement of its functional groups. When studying stereochemistry, the understanding of equatorial bond plays a pivotal role. Chemists must consider how the orientation of bonds affects isomerism. Two compounds may have the same molecular formula but different arrangements of their atoms, leading to distinct properties. By recognizing the importance of equatorial versus axial bonds, chemists can predict the behavior of these isomers in various reactions. Moreover, the implications of equatorial bond can also be seen in drug design and development. Many pharmaceuticals are designed to interact with biological targets in a specific way, and the spatial arrangement of atoms within a drug molecule can determine its efficacy. By ensuring that certain groups are in an equatorial position, scientists can enhance the binding affinity of a drug to its target, improving its therapeutic potential. In conclusion, the equatorial bond is not just a mere technical term; it embodies the intricate dance of atoms that defines molecular behavior. Understanding this concept allows chemists to navigate the complexities of molecular interactions, predict the outcomes of reactions, and innovate in fields such as materials science and pharmacology. As we continue to explore the world of chemistry, the significance of bonds like the equatorial bond will undoubtedly remain a cornerstone of our understanding of molecular dynamics.
在化学领域,理解分子结构对于掌握物质之间的相互作用至关重要。这些结构的一个关键方面是将原子结合在一起的键的类型。在这些键中,术语equatorial bond指的是某些分子几何形状中特定的排列,特别是在环状化合物如环己烷中。当环上的取代基平行于环的平面时,就会形成这种键,而不是轴向的,即垂直于平面。
equatorial bond的重要性在于它对分子的稳定性和反应性的影响。例如,在环己烷中,占据赤道位置的取代基与占据轴向位置的取代基相比,经历的立体障碍较小。这是因为轴向取代基可能导致称为1,3-二轴相互作用的相互作用,位于同一侧的轴向基团产生排斥力,从而使分子不稳定。因此,在分析环己烷衍生物的构象时,化学家通常更喜欢较大取代基的赤道排列,以最小化这些不利相互作用。
此外,equatorial bond的概念超越了环己烷。在许多多环化合物甚至更大的有机分子中,取代基的位置(无论是赤道还是轴向)都可以显著影响化合物的物理和化学性质。例如,化合物的溶解度、沸点和反应性都可能受到其官能团空间排列的影响。
在研究立体化学时,理解equatorial bond起着关键作用。化学家必须考虑键的方向如何影响异构现象。两个化合物可能具有相同的分子式,但原子的排列不同,从而导致不同的性质。通过认识到赤道键与轴向键的重要性,化学家可以预测这些异构体在各种反应中的行为。
此外,equatorial bond的影响也可以在药物设计和开发中看到。许多药物都是为了以特定方式与生物靶点相互作用而设计的,药物分子中原子的空间排列可以决定其功效。通过确保某些基团处于赤道位置,科学家可以增强药物与其靶点的结合亲和力,提高其治疗潜力。
总之,equatorial bond不仅仅是一个技术术语;它体现了定义分子行为的原子之间复杂的舞蹈。理解这一概念使化学家能够驾驭分子相互作用的复杂性,预测反应结果,并在材料科学和药理学等领域进行创新。随着我们继续探索化学世界,像equatorial bond这样的键的重要性无疑将成为我们理解分子动力学的基石。
相关单词