editsteric hindrance
简明释义
立体阻碍
英英释义
例句
1.The bulky groups attached to the substrate create steric hindrance, slowing down the enzyme activity.
附加在底物上的大团体产生了空间位阻,减缓了酶的活性。
2.The presence of steric hindrance in a molecule can influence its boiling point.
分子中存在的空间位阻可以影响其沸点。
3.When designing drugs, scientists must consider steric hindrance to ensure proper binding.
在设计药物时,科学家必须考虑空间位阻以确保适当的结合。
4.In organic chemistry, steric hindrance can prevent certain reactions from occurring.
在有机化学中,空间位阻可能会阻止某些反应的发生。
5.The reaction rate was significantly affected by the steric hindrance in the molecular structure.
反应速率受到分子结构中空间位阻的显著影响。
作文
In the field of chemistry, understanding molecular interactions is crucial for predicting the behavior of substances. One important concept that often arises in this context is steric hindrance, which refers to the prevention of reactions or interactions due to the spatial arrangement of atoms within a molecule. This phenomenon can significantly influence the reactivity and stability of chemical compounds, making it a key factor in organic synthesis and molecular design.To illustrate the importance of steric hindrance, consider the example of large substituents attached to a central carbon atom in a molecule. When bulky groups are present, they can obstruct the approach of other reactants, thereby slowing down or even preventing a reaction from occurring. For instance, in the case of nucleophilic substitution reactions, a bulky nucleophile may struggle to access the electrophilic center of a substrate due to the presence of larger groups nearby. This effect can lead to a decrease in the reaction rate and yield, highlighting the practical implications of steric hindrance in synthetic chemistry.Moreover, steric hindrance also plays a vital role in determining the conformation of molecules. The three-dimensional arrangement of atoms affects not only the physical properties of a compound but also its biological activity. For example, in drug design, the spatial configuration of a drug molecule can impact its ability to bind to a target protein. If a drug is too bulky due to steric hindrance, it may not fit into the active site of the protein, rendering it ineffective. Therefore, chemists must carefully consider steric hindrance when designing new pharmaceuticals to ensure optimal interaction with biological targets.In addition to its implications in reactivity and conformation, steric hindrance can also influence the stability of intermediates in chemical reactions. For example, in certain elimination reactions, the presence of bulky groups can stabilize the transition state, thereby affecting the overall mechanism of the reaction. This stabilization may lead to unexpected pathways and products, further underscoring the significance of steric hindrance in chemical processes.Furthermore, steric hindrance is not limited to organic chemistry; it also has implications in materials science and nanotechnology. In the development of polymers, for instance, the size and arrangement of side chains can dictate the mechanical properties and thermal stability of the material. Understanding how steric hindrance influences these characteristics allows scientists to engineer materials with specific attributes tailored for various applications.In conclusion, steric hindrance is a fundamental concept in chemistry that affects molecular interactions, reaction rates, and the stability of compounds. Its implications extend beyond organic synthesis to fields such as drug design and materials science. By comprehensively understanding steric hindrance, chemists and researchers can better predict and manipulate the behavior of molecules, leading to advancements in various scientific disciplines.
在化学领域,理解分子间的相互作用对于预测物质的行为至关重要。在这个背景下,一个重要的概念经常出现,即立体阻碍,它指的是由于分子内原子的空间排列而导致的反应或相互作用的阻止。这种现象可以显著影响化合物的反应性和稳定性,使其成为有机合成和分子设计中的关键因素。为了说明立体阻碍的重要性,考虑一下附着在分子中心碳原子上的大取代基的例子。当体积较大的基团存在时,它们可能会阻碍其他反应物的接近,从而减缓甚至阻止反应的发生。例如,在亲核取代反应的情况下,体积较大的亲核试剂可能难以接触到底物的电亲中心,因为附近存在较大的基团。这种影响可能导致反应速率和产率的降低,突显了在合成化学中立体阻碍的实际意义。此外,立体阻碍在确定分子的构象方面也起着至关重要的作用。原子的三维排列不仅影响化合物的物理性质,还影响其生物活性。例如,在药物设计中,药物分子的空间构型可能会影响其与靶蛋白结合的能力。如果由于立体阻碍而使药物过于庞大,它可能无法适应蛋白质的活性位点,从而使其失效。因此,化学家在设计新药物时必须仔细考虑立体阻碍,以确保与生物靶标的最佳相互作用。除了对反应性和构象的影响外,立体阻碍还可以影响化学反应中中间体的稳定性。例如,在某些消除反应中,体积较大的基团可以稳定过渡态,从而影响反应的整体机制。这种稳定性可能导致意想不到的反应途径和产物,进一步强调了立体阻碍在化学过程中的重要性。此外,立体阻碍并不限于有机化学;它在材料科学和纳米技术中也具有重要意义。在聚合物的开发中,例如,侧链的大小和排列可以决定材料的机械性能和热稳定性。理解立体阻碍如何影响这些特性使科学家能够设计出具有特定属性的材料,以满足各种应用需求。总之,立体阻碍是化学中的一个基本概念,它影响分子间的相互作用、反应速率和化合物的稳定性。它的影响超越了有机合成,延伸到药物设计和材料科学等领域。通过全面理解立体阻碍,化学家和研究人员可以更好地预测和操控分子的行为,从而推动各个科学学科的进步。
相关单词