double refraction
简明释义
双折射
英英释义
例句
1.When light passes through a crystal, it can exhibit double refraction, or 双折射, causing two distinct rays to emerge.
当光线通过晶体时,它可能会表现出双折射,或双折射,导致两条不同的光线出现。
2.During a physics experiment, we observed double refraction in a piece of Iceland spar, or 双折射在一块冰岛方解石上被观察到。
在一次物理实验中,我们观察到了双折射现象。
3.The phenomenon of double refraction is commonly observed in materials like calcite and quartz, which are used in optical devices.
在光学设备中,常见于方解石和石英等材料中观察到双折射现象。
4.Optical fibers utilize the principle of double refraction to enhance signal transmission efficiency, or 双折射以提高信号传输效率。
光纤利用双折射原理来增强信号传输效率。
5.In geology, double refraction can help identify minerals by their unique optical properties, or 双折射可以帮助识别矿物的独特光学特性。
在地质学中,双折射可以帮助识别矿物的独特光学特性。
作文
Double refraction, also known as birefringence, is a fascinating optical phenomenon that occurs in certain materials. This effect can be observed when light passes through a birefringent substance, causing it to split into two rays, each traveling at different speeds and in different directions. The study of double refraction (双折射) is essential in various fields, including optics, mineralogy, and even in the development of advanced technologies such as liquid crystal displays (LCDs). Understanding the principles behind double refraction requires a basic knowledge of how light interacts with matter.When light enters a birefringent material, it encounters anisotropic properties, meaning that the material has different refractive indices depending on the direction of the incoming light. This results in the separation of the light into two distinct beams: the ordinary ray and the extraordinary ray. The ordinary ray behaves according to Snell's law, while the extraordinary ray does not follow this law in the same manner due to its unique interaction with the crystal lattice of the material. This phenomenon leads to fascinating visual effects, such as the colorful patterns seen when looking through a calcite crystal.The implications of double refraction extend beyond mere visual spectacle. In mineralogy, geologists utilize this property to identify minerals and understand their structures. By examining how a mineral interacts with polarized light, scientists can glean valuable information about its composition and crystalline arrangement. This is particularly useful in fields like geology and material science, where understanding the properties of substances is crucial.Moreover, double refraction plays a significant role in modern technology. For instance, LCD screens rely on the principles of birefringence to control light and create images. The liquid crystals used in these displays have unique optical properties that allow them to manipulate light effectively, resulting in vibrant colors and sharp images. Engineers and designers must have a thorough understanding of double refraction to innovate and improve display technologies continually.In addition to its applications in technology and science, double refraction also finds its way into art and photography. Artists and photographers often exploit this phenomenon to create stunning visual effects. By using polarizing filters, they can enhance colors and contrast in their images, making the most of the unique interactions between light and the materials they are working with.In conclusion, double refraction (双折射) is a captivating phenomenon that demonstrates the complex relationship between light and matter. Its implications stretch across multiple disciplines, from geology and mineralogy to technology and art. By studying and understanding double refraction, we can unlock new possibilities in science and innovation, as well as appreciate the beauty of the natural world around us. Whether observed through a crystal or utilized in cutting-edge technology, the effects of double refraction remind us of the intricate and often surprising nature of light.
双折射,又称为双折射现象,是一种迷人的光学现象,发生在某些材料中。当光线通过一个双折射物质时,这种效应可以被观察到,它导致光线分裂成两束光,每束光以不同的速度和方向传播。研究双折射(double refraction)在多个领域中都是至关重要的,包括光学、矿物学,甚至在液晶显示器(LCD)等先进技术的发展中。理解双折射的原理需要对光如何与物质相互作用有基本的了解。当光进入一个双折射材料时,它遇到了各向异性的特性,这意味着材料在不同的入射光方向上具有不同的折射率。这导致光线分成两束不同的光:普通光线和非常光线。普通光线按照斯涅尔定律行为,而非常光线由于其与材料晶格的独特相互作用,不会以相同的方式遵循这一规律。这种现象导致了迷人的视觉效果,例如透过方解石晶体看到的多彩图案。双折射的影响超越了单纯的视觉奇观。在矿物学中,地质学家利用这一特性来识别矿物并理解其结构。通过检查矿物如何与偏振光相互作用,科学家可以获得关于其成分和晶体排列的宝贵信息。这在地质学和材料科学等领域尤为重要,在这些领域中,理解物质的性质至关重要。此外,双折射在现代技术中也发挥着重要作用。例如,LCD屏幕依赖于双折射的原理来控制光并创建图像。这些显示器中使用的液晶具有独特的光学特性,使它们能够有效地操控光,从而产生生动的色彩和清晰的图像。工程师和设计师必须深入理解双折射,以不断创新和改善显示技术。除了在技术和科学中的应用外,双折射还出现在艺术和摄影中。艺术家和摄影师常常利用这种现象来创造惊艳的视觉效果。通过使用偏振滤光片,他们可以增强图像中的颜色和对比度,充分利用光与他们所使用材料之间的独特相互作用。总之,双折射(double refraction)是一种迷人的现象,展示了光与物质之间复杂的关系。它的影响跨越多个学科,从地质学和矿物学到技术和艺术。通过研究和理解双折射,我们可以在科学和创新中解锁新的可能性,同时欣赏我们周围自然世界的美丽。无论是通过晶体观察,还是在尖端技术中利用,双折射的效果都提醒我们光的复杂性和常常令人惊讶的本质。
相关单词