distribution of polymerization degree

简明释义

聚合度分布

英英释义

The distribution of polymerization degree refers to the variation in the number of monomer units in polymer chains within a sample, indicating how many repeating units are present in different polymer molecules.

聚合度分布是指样品中聚合链中单体单位数量的变化,表明不同聚合物分子中存在多少个重复单元。

例句

1.The study focused on the distribution of polymerization degree to determine the material's properties.

这项研究集中在聚合度分布上,以确定材料的特性。

2.The distribution of polymerization degree affects the solubility of the polymer in different solvents.

不同溶剂中的聚合物溶解度受聚合度分布的影响。

3.In our experiment, we observed a bimodal distribution of polymerization degree indicating two different polymer chains.

在我们的实验中,我们观察到双峰的聚合度分布,表明存在两种不同的聚合物链。

4.A narrow distribution of polymerization degree often results in more uniform mechanical properties.

较窄的聚合度分布通常会导致更均匀的机械性能。

5.We analyzed the distribution of polymerization degree using gel permeation chromatography.

我们利用凝胶渗透色谱分析了聚合度分布

作文

The study of polymers has become increasingly important in various fields, including materials science, biology, and engineering. One critical aspect of polymer chemistry is the distribution of polymerization degree, which refers to the range of molecular weights and chain lengths present in a polymer sample. Understanding this distribution is essential for predicting the properties and behaviors of polymers in different applications.Polymers are made up of long chains of repeating units called monomers. When these monomers undergo polymerization, they can form chains of varying lengths. The distribution of polymerization degree provides insight into how many chains of each length exist within a given polymer sample. This distribution can significantly affect the physical and chemical properties of the polymer, such as its strength, elasticity, and thermal stability.For instance, in the production of plastics, manufacturers often aim for a specific distribution of polymerization degree to achieve desired characteristics. A narrow distribution might result in a material that is uniform and predictable in its behavior, while a broad distribution could lead to a material with enhanced toughness or flexibility. This is crucial for applications where performance under stress is vital, such as in automotive or aerospace components.Moreover, the distribution of polymerization degree can influence the processing of polymers. For example, during extrusion or molding, polymers with different molecular weight distributions may flow differently, affecting the ease of manufacturing and the quality of the final product. Therefore, controlling this distribution during synthesis is a key factor in polymer design and processing.In addition to industrial applications, the distribution of polymerization degree is also relevant in biological systems. Natural polymers, such as proteins and nucleic acids, exhibit specific distributions that are crucial for their function. For example, the varying lengths of DNA strands can impact genetic expression and regulation, highlighting the importance of this concept beyond synthetic materials.To measure the distribution of polymerization degree, scientists employ various analytical techniques, such as gel permeation chromatography (GPC) and size exclusion chromatography (SEC). These methods allow researchers to separate polymer chains based on their size and provide detailed information about the molecular weight distribution. By analyzing this data, scientists can tailor polymer synthesis processes to achieve the desired properties and functionalities.In conclusion, the distribution of polymerization degree is a fundamental concept in polymer chemistry that plays a crucial role in determining the properties and applications of polymers. Whether in industrial manufacturing or biological systems, understanding and controlling this distribution can lead to significant advancements in material science and technology. As research in this field continues to evolve, the implications of the distribution of polymerization degree will undoubtedly expand, paving the way for innovative solutions to modern challenges.

聚合物的研究在材料科学、生物学和工程等多个领域变得越来越重要。聚合物化学中的一个关键方面是聚合度分布,它指的是给定聚合物样品中存在的分子量和链长的范围。理解这一分布对于预测聚合物在不同应用中的性质和行为至关重要。聚合物由称为单体的重复单元组成。当这些单体经历聚合反应时,它们可以形成不同长度的链。聚合度分布提供了关于给定聚合物样品中每种长度的链有多少条的见解。这种分布会显著影响聚合物的物理和化学性质,例如其强度、弹性和热稳定性。例如,在塑料生产中,制造商通常旨在获得特定的聚合度分布以实现所需的特性。狭窄的分布可能导致材料在行为上均匀且可预测,而宽广的分布可能使材料具有增强的韧性或灵活性。这对于在压力下性能至关重要的应用(例如汽车或航空航天组件)至关重要。此外,聚合度分布还会影响聚合物的加工。例如,在挤出或成型过程中,不同分子量分布的聚合物可能流动方式不同,从而影响制造的便利性和最终产品的质量。因此,在合成过程中控制这一分布是聚合物设计和加工的关键因素。除了工业应用,聚合度分布在生物系统中也很相关。天然聚合物,如蛋白质和核酸,表现出特定的分布,这对它们的功能至关重要。例如,DNA链的不同长度会影响基因表达和调控,突显了这一概念在合成材料之外的重要性。为了测量聚合度分布,科学家们采用各种分析技术,如凝胶渗透色谱(GPC)和尺寸排斥色谱(SEC)。这些方法允许研究人员根据大小分离聚合物链,并提供有关分子量分布的详细信息。通过分析这些数据,科学家可以调整聚合物合成过程,以实现所需的性质和功能。总之,聚合度分布是聚合物化学中的一个基本概念,在决定聚合物的性质和应用方面发挥着至关重要的作用。无论是在工业制造还是生物系统中,理解和控制这一分布都可以带来材料科学和技术上的重大进展。随着该领域研究的不断发展,聚合度分布的影响无疑会扩大,为现代挑战提供创新解决方案。

相关单词

distribution

distribution详解:怎么读、什么意思、用法

degree

degree详解:怎么读、什么意思、用法