dimensionless number

简明释义

无因次数

英英释义

A dimensionless number is a quantity without any physical units, which is used to describe the ratio of two quantities that have the same dimensions, allowing for comparisons and simplifications in mathematical modeling.

无量纲数是一个没有任何物理单位的量,用于描述两个具有相同维度的量之间的比率,从而在数学建模中进行比较和简化。

例句

1.In heat transfer, the Nusselt number is a dimensionless number 无量纲数 that indicates the ratio of convective to conductive heat transfer.

在热传递中,努塞尔数是一个无量纲数 dimensionless number,它表示对流与导热的比率。

2.In chemical engineering, the Schmidt number is a dimensionless number 无量纲数 representing the ratio of momentum diffusivity to mass diffusivity.

在化学工程中,施密特数是一个无量纲数 dimensionless number,表示动量扩散与质量扩散的比率。

3.In fluid dynamics, the Reynolds number is a crucial dimensionless number 无量纲数 that helps predict flow patterns in different fluid flow situations.

在流体动力学中,雷诺数是一个关键的无量纲数 dimensionless number,它有助于预测不同流体流动情况中的流动模式。

4.The Mach number is another important dimensionless number 无量纲数 used to compare the speed of an object to the speed of sound.

马赫数是另一个重要的无量纲数 dimensionless number,用于将物体的速度与声速进行比较。

5.The Strouhal number is a dimensionless number 无量纲数 that describes oscillating flow mechanisms.

斯特劳哈尔数是一个无量纲数 dimensionless number,描述振荡流动机制。

作文

In the field of science and engineering, understanding various concepts is crucial for effective problem-solving and innovation. One such important concept is the dimensionless number, which plays a significant role in fluid dynamics, heat transfer, and other areas of physics. A dimensionless number is a numerical value that does not have any physical units associated with it. This characteristic allows scientists and engineers to compare different systems or phenomena without the complications that arise from varying units of measurement.For instance, consider the Reynolds number, a well-known dimensionless number used in fluid mechanics. It is defined as the ratio of inertial forces to viscous forces and is used to predict flow patterns in different fluid flow situations. By using the Reynolds number, engineers can determine whether a flow is laminar or turbulent, which is critical for designing efficient systems such as pipelines, airfoils, and even car bodies.The significance of dimensionless numbers extends beyond just fluid mechanics. In heat transfer, the Nusselt number is another example of a dimensionless number. It represents the ratio of convective to conductive heat transfer across a boundary. By analyzing the Nusselt number, engineers can optimize thermal management systems, ensuring that devices operate efficiently and safely under various conditions.Moreover, dimensionless numbers facilitate the scaling of experimental results to real-world applications. When researchers conduct experiments in a controlled environment, they often use dimensionless numbers to ensure that their findings can be applied to larger systems. For example, the Froude number, which compares inertial and gravitational forces, is essential in predicting the behavior of ships in water. By maintaining the same dimensionless number in model testing and full-scale applications, one can accurately predict how a vessel will perform at sea.In addition to their practical applications, dimensionless numbers also provide insights into the underlying physics of various systems. They help simplify complex equations and make it easier to identify key parameters affecting a phenomenon. This simplification is particularly valuable in theoretical research, where understanding the fundamental principles governing a system can lead to new discoveries and advancements.However, it is essential to recognize that while dimensionless numbers are powerful tools, they are not universally applicable. Each dimensionless number is specific to a particular context or system, and misapplying them can lead to incorrect conclusions. Therefore, it is crucial for scientists and engineers to have a deep understanding of the systems they are studying and the appropriate dimensionless numbers to use in their analyses.In conclusion, the concept of dimensionless numbers is vital in the realms of science and engineering. These numbers allow for comparisons between different systems, facilitate the scaling of experimental results, and provide valuable insights into the physics at play. As technology continues to advance, the importance of dimensionless numbers will only grow, ensuring that they remain an essential part of scientific inquiry and engineering design.

在科学和工程领域,理解各种概念对于有效解决问题和创新至关重要。其中一个重要的概念是无量纲数,它在流体动力学、热传递和其他物理领域中发挥着重要作用。无量纲数是一个没有任何物理单位的数值。这一特性使得科学家和工程师能够比较不同的系统或现象,而不会因测量单位的变化而产生复杂性。例如,考虑雷诺数,这是流体力学中一个著名的无量纲数。它被定义为惯性力与粘性力的比率,用于预测不同流体流动情况下的流动模式。通过使用雷诺数,工程师可以确定流动是层流还是湍流,这对设计高效的系统(如管道、机翼甚至汽车车身)至关重要。无量纲数的重要性不仅限于流体力学。在热传递中,努塞尔数是另一个无量纲数的例子。它表示对流与导热在边界上的比率。通过分析努塞尔数,工程师可以优化热管理系统,确保设备在各种条件下高效且安全地运行。此外,无量纲数有助于将实验结果的缩放应用于现实世界。当研究人员在受控环境中进行实验时,他们通常使用无量纲数来确保他们的发现可以应用于更大的系统。例如,弗劳德数,它比较了惯性力和重力,是预测船只在水中行为的关键。通过在模型测试和全尺度应用中保持相同的无量纲数,可以准确预测船只在海上的表现。除了实际应用,无量纲数还提供了对各种系统基本物理学的洞察。它们帮助简化复杂的方程,使识别影响现象的关键参数变得更加容易。这种简化在理论研究中尤为宝贵,因为理解支配系统的基本原理可以导致新的发现和进步。然而,必须认识到,虽然无量纲数是强大的工具,但并不是普遍适用的。每个无量纲数都是特定于特定上下文或系统的,错误应用它们可能导致不正确的结论。因此,科学家和工程师必须深入了解他们所研究的系统以及在分析中使用的适当无量纲数。总之,无量纲数的概念在科学和工程领域至关重要。这些数字允许对不同系统进行比较,促进实验结果的缩放,并提供对所涉及物理学的宝贵见解。随着技术的不断进步,无量纲数的重要性只会增加,确保它们在科学探究和工程设计中仍然是不可或缺的一部分。

相关单词

dimensionless

dimensionless详解:怎么读、什么意思、用法