dative bond
简明释义
配价键
英英释义
A dative bond is a type of chemical bond where one atom donates a pair of electrons to another atom, forming a coordinate covalent bond. | 配位键是一种化学键,其中一个原子向另一个原子捐赠一对电子,形成配位共价键。 |
例句
1.The nitrogen atom in ammonia donates a pair of electrons to form a dative bond 配位键 with a proton.
氨中的氮原子向质子捐赠一对电子以形成一个dative bond 配位键。
2.Understanding dative bonds 配位键 is crucial for predicting the behavior of transition metals.
理解dative bonds 配位键对于预测过渡金属的行为至关重要。
3.In organic chemistry, certain reactions involve the formation of a dative bond 配位键 between a nucleophile and an electrophile.
在有机化学中,某些反应涉及亲核试剂与亲电试剂之间形成一个dative bond 配位键。
4.The dative bond 配位键 in the complex ion allows for stability in solution.
复杂离子中的dative bond 配位键使其在溶液中具有稳定性。
5.In coordination chemistry, a metal can form a dative bond 配位键 with a ligand, allowing for complex formation.
在配位化学中,金属可以与配体形成一个dative bond 配位键,从而允许复杂物的形成。
作文
In the realm of chemistry, understanding the fundamental interactions between atoms is crucial for grasping how molecules are formed and behave. One such interaction is the dative bond, which plays a significant role in the formation of complex molecules. A dative bond can be defined as a type of covalent bond where one atom provides both electrons for the bond, while the other atom does not contribute any electrons. This unique characteristic distinguishes it from a standard covalent bond, where each atom typically contributes one electron to the bond. To illustrate the concept of a dative bond, consider the example of ammonia (NH₃) and boron trifluoride (BF₃). Ammonia has a lone pair of electrons that it can donate, while boron trifluoride has an incomplete octet and can accept an electron pair. When these two molecules interact, the nitrogen atom in ammonia donates its lone pair to boron, forming a dative bond. This interaction results in the formation of the adduct, ammonium boron trifluoride (NH₃·BF₃), showcasing the importance of the dative bond in creating stable molecular structures.The significance of dative bonds extends beyond simple molecular formations; they are also vital in various biochemical processes. For instance, many metal complexes exhibit dative bonding where ligands donate electron pairs to metal ions, resulting in coordination compounds. These compounds are essential in biological systems, such as hemoglobin, where iron ions form dative bonds with oxygen molecules, facilitating oxygen transport in the bloodstream.Moreover, the presence of dative bonds can influence the properties of substances. For example, the solubility, reactivity, and stability of certain compounds can be attributed to the presence of these bonds. Understanding dative bonds allows chemists to predict how different substances will interact, leading to advancements in material science, pharmacology, and environmental chemistry.In summary, the dative bond is a fascinating aspect of chemical bonding that highlights the complexity and beauty of molecular interactions. By recognizing the unique characteristics of dative bonds, we can better appreciate the intricate web of connections that underpin the behavior of matter at the molecular level. The study of dative bonds not only enriches our understanding of chemistry but also opens doors to innovative applications in various scientific fields.
在化学领域,理解原子之间的基本相互作用对于掌握分子的形成和行为至关重要。其中一种相互作用是dative bond,它在复杂分子的形成中发挥着重要作用。dative bond可以定义为一种共价键,其中一个原子提供了键的两个电子,而另一个原子则不贡献任何电子。这一独特特性使其与标准共价键区分开来,在标准共价键中,每个原子通常会贡献一个电子。 为了说明dative bond的概念,可以考虑氨(NH₃)和氟化硼(BF₃)的例子。氨具有可以捐赠的孤对电子,而氟化硼则具有不完整的八电子结构,可以接受电子对。当这两种分子相互作用时,氨中的氮原子将其孤对捐赠给硼,从而形成了一个dative bond。这种相互作用导致了加合物氨基氟化硼(NH₃·BF₃)的形成,展示了dative bond在创建稳定分子结构中的重要性。dative bond的重要性不仅限于简单的分子形成;它们在各种生化过程中也至关重要。例如,许多金属配合物表现出dative bonding,其中配体向金属离子捐赠电子对,形成配位化合物。这些化合物在生物系统中是必不可少的,例如血红蛋白,其中铁离子与氧分子形成dative bonds,促进氧气在血液中的运输。此外,dative bonds的存在可能影响物质的性质。例如,某些化合物的溶解度、反应性和稳定性可以归因于这些键的存在。理解dative bonds使化学家能够预测不同物质之间的相互作用,从而推动材料科学、药理学和环境化学等领域的进步。总之,dative bond是化学键合的一个迷人方面,突显了分子相互作用的复杂性和美丽。通过认识dative bonds的独特特性,我们可以更好地欣赏支撑物质在分子层面行为的复杂联系网。对dative bonds的研究不仅丰富了我们对化学的理解,还为各个科学领域的创新应用打开了大门。