crystallographical equivalent

简明释义

结晶学等价

英英释义

Crystallographical equivalent refers to two or more crystal structures that exhibit the same symmetry and arrangement of atoms, even if they differ in their spatial orientation or position.

晶体等价是指两种或多种晶体结构,它们表现出相同的对称性和原子排列,即使它们在空间方向或位置上有所不同。

例句

1.The concept of crystallographical equivalent 晶体等价的 is crucial for understanding phase transitions in materials.

理解材料中的相变时,crystallographical equivalent 晶体等价的 概念至关重要。

2.The software can automatically detect crystallographical equivalent 晶体等价的 positions in the crystal lattice.

该软件可以自动检测晶格中的crystallographical equivalent 晶体等价的 位置。

3.When analyzing the diffraction patterns, we identified several crystallographical equivalent 晶体等价的 spots that corresponded to the same lattice planes.

在分析衍射图案时,我们识别出几个与相同晶格面对应的crystallographical equivalent 晶体等价的 点。

4.Researchers found that the two minerals were crystallographical equivalent 晶体等价的, despite their different chemical compositions.

研究人员发现这两种矿物是crystallographical equivalent 晶体等价的,尽管它们的化学成分不同。

5.In the study of crystal structures, two different arrangements can be considered as crystallographical equivalent 晶体等价的 if they yield the same symmetry properties.

在晶体结构研究中,如果两种不同的排列具有相同的对称性质,则可以视为crystallographical equivalent 晶体等价的

作文

In the field of crystallography, understanding the concept of crystallographical equivalent is crucial for analyzing the symmetry and properties of crystals. Crystallography, which is the study of crystal structures and their properties, relies heavily on the arrangement of atoms within a crystal lattice. When we talk about crystallographical equivalent (晶体等价), we refer to different positions in the crystal lattice that exhibit similar symmetry and can be transformed into one another through symmetry operations such as rotation or reflection.To illustrate this concept, consider a simple cubic crystal structure. In such a structure, there are multiple atoms that occupy positions that are crystallographical equivalent. For instance, if you have an atom at one corner of the cube, there are other corners that are crystallographical equivalent to it. This means that if you were to rotate the cube, the atom at the corner would occupy a position that is indistinguishable from the others in terms of symmetry and environment.The significance of identifying crystallographical equivalent positions lies in its applications in various scientific fields. For example, in materials science, knowing the crystallographical equivalent sites can help researchers predict how materials will behave under different conditions, such as temperature changes or mechanical stress. It allows scientists to understand how defects in the crystal lattice might affect the material’s properties and performance.Moreover, in the realm of solid-state chemistry, the concept of crystallographical equivalent is vital for determining how different compounds can interact at the atomic level. For instance, when studying catalytic processes, understanding which atoms are crystallographical equivalent can provide insights into how catalysts function and how they can be optimized for better efficiency.In addition, the identification of crystallographical equivalent positions plays a significant role in X-ray diffraction studies. When X-rays are directed at a crystal, they scatter in specific directions based on the arrangement of atoms. By analyzing the resulting diffraction pattern, scientists can deduce which atoms are crystallographical equivalent and how they are arranged within the crystal. This information is critical for constructing accurate models of crystal structures, which in turn can influence the development of new materials with desirable properties.In conclusion, the concept of crystallographical equivalent is a foundational aspect of crystallography that aids in understanding the symmetry and behavior of crystals. Its implications stretch across various scientific disciplines, impacting everything from materials science to solid-state chemistry and beyond. As researchers continue to explore the intricacies of crystal structures, the importance of recognizing and analyzing crystallographical equivalent positions will undoubtedly remain a key focus in advancing our knowledge of the material world. Thus, mastering this concept is essential for anyone looking to delve deeper into the fascinating realm of crystallography and its applications.

在晶体学领域,理解crystallographical equivalent(晶体等价)的概念对于分析晶体的对称性和性质至关重要。晶体学是研究晶体结构及其性质的学科,严重依赖于晶体格子中原子的排列。当我们谈论crystallographical equivalent时,我们指的是晶体格子中不同的位置,这些位置表现出相似的对称性,并且可以通过旋转或反射等对称操作相互转换。为了说明这一概念,考虑一个简单的立方晶体结构。在这样的结构中,有多个原子占据了crystallographical equivalent的位置。例如,如果您在立方体的一个角落有一个原子,那么其他角落也与之crystallographical equivalent。这意味着如果您旋转立方体,角落的原子将占据一个在对称性和环境上与其他原子无法区分的位置。识别crystallographical equivalent位置的重要性在于它在各个科学领域中的应用。例如,在材料科学中,了解crystallographical equivalent位点可以帮助研究人员预测材料在不同条件下的行为,比如温度变化或机械应力。这使科学家能够理解晶体格子中的缺陷如何影响材料的性质和性能。此外,在固态化学领域,crystallographical equivalent的概念对于确定不同化合物如何在原子水平上相互作用至关重要。例如,在研究催化过程时,了解哪些原子是crystallographical equivalent可以提供催化剂如何运作以及如何优化催化剂以提高效率的见解。此外,识别crystallographical equivalent位置在X射线衍射研究中也发挥着重要作用。当X射线照射到晶体时,它们根据原子的排列在特定方向上散射。通过分析由此产生的衍射图案,科学家可以推导出哪些原子是crystallographical equivalent的,以及它们在晶体中的排列。这些信息对于构建准确的晶体结构模型至关重要,而这些模型又可以影响新材料的开发,使其具备理想的性质。总之,crystallographical equivalent的概念是晶体学的基础方面,有助于理解晶体的对称性和行为。它的影响跨越多个科学学科,影响从材料科学到固态化学等各个领域。随着研究人员继续探索晶体结构的复杂性,识别和分析crystallographical equivalent位置的重要性无疑将继续成为推进我们对物质世界知识的关键焦点。因此,掌握这一概念对于任何希望深入了解晶体学及其应用的研究者来说都是必不可少的。