coordination polymer
简明释义
配位高聚物
英英释义
例句
1.Researchers have developed a new type of coordination polymer 配位聚合物 that exhibits remarkable gas storage capabilities.
研究人员开发了一种新型的coordination polymer配位聚合物,具有卓越的气体储存能力。
2.The stability of the coordination polymer 配位聚合物 makes it suitable for various industrial applications.
该coordination polymer配位聚合物的稳定性使其适用于多种工业应用。
3.A novel coordination polymer 配位聚合物 has been synthesized to improve photocatalytic activity.
合成了一种新型的coordination polymer配位聚合物以提高光催化活性。
4.The unique properties of coordination polymers 配位聚合物 make them ideal candidates for sensors.
由于其独特的性质,coordination polymers配位聚合物成为传感器的理想候选材料。
5.Scientists are exploring the use of coordination polymers 配位聚合物 in drug delivery systems.
科学家们正在探索在药物递送系统中使用coordination polymers配位聚合物。
作文
Coordination polymers are fascinating materials that have garnered significant attention in the fields of chemistry and materials science. These compounds are formed through the coordination of metal ions with organic ligands, resulting in a three-dimensional network structure. The unique properties of coordination polymer (配位聚合物) make them suitable for a wide range of applications, including gas storage, catalysis, and drug delivery. In this essay, I will explore the structure, synthesis, and potential applications of coordination polymers (配位聚合物), highlighting their importance in modern science.The structure of coordination polymers (配位聚合物) is one of their most intriguing features. These materials consist of metal ions, which serve as nodes, connected by organic ligands that act as linkers. This arrangement creates a porous framework that can be tailored by varying the choice of metal ions and ligands. For instance, transition metals such as copper, zinc, and cobalt are commonly used due to their ability to form stable coordination complexes. The choice of ligands also plays a crucial role, as they determine the connectivity and dimensionality of the resulting polymer. As a result, coordination polymers (配位聚合物) can exhibit diverse structural motifs, ranging from one-dimensional chains to two-dimensional sheets and three-dimensional frameworks.The synthesis of coordination polymers (配位聚合物) can be achieved through various methods, including solvothermal, hydrothermal, and mechanochemical processes. Each method offers unique advantages and allows for the precise control of reaction conditions. Solvothermal synthesis, for example, involves dissolving the metal salts and organic ligands in a solvent and heating the mixture in a sealed container. This method often leads to high-quality crystals suitable for single-crystal X-ray diffraction studies, which are essential for determining the precise arrangement of atoms within the polymer. On the other hand, mechanochemical synthesis is a more environmentally friendly approach that does not require solvents, making it an attractive option for sustainable materials development.The potential applications of coordination polymers (配位聚合物) are vast and varied. One of the most promising areas is gas storage, particularly for hydrogen and carbon dioxide. Due to their tunable porosity, coordination polymers (配位聚合物) can be designed to selectively adsorb specific gases, making them ideal candidates for energy storage and environmental remediation. Additionally, their catalytic properties have been extensively studied, with many coordination polymers (配位聚合物) exhibiting high catalytic activity for various chemical reactions, including oxidation and reduction processes.In the realm of drug delivery, coordination polymers (配位聚合物) have shown great promise due to their biocompatibility and ability to encapsulate therapeutic agents. By modifying the surface properties of these polymers, researchers can enhance drug release profiles and target specific tissues or cells, leading to improved therapeutic outcomes.In conclusion, coordination polymers (配位聚合物) represent a remarkable class of materials with unique structures and properties. Their ability to form intricate networks through the coordination of metal ions and organic ligands opens up numerous possibilities for innovative applications in gas storage, catalysis, and drug delivery. As research in this field continues to advance, we can expect to see even more exciting developments that leverage the potential of coordination polymers (配位聚合物) in addressing some of the most pressing challenges in science and technology.
配位聚合物是引人入胜的材料,在化学和材料科学领域引起了广泛关注。这些化合物通过金属离子与有机配体的配位形成,从而形成三维网络结构。coordination polymer(配位聚合物)的独特性质使其适用于多种应用,包括气体存储、催化和药物传递。在这篇文章中,我将探讨coordination polymers(配位聚合物)的结构、合成及潜在应用,强调它们在现代科学中的重要性。coordination polymers(配位聚合物)的结构是其最引人注目的特点之一。这些材料由金属离子组成,金属离子作为节点,通过有机配体连接,这些配体作为连接体。这种排列创建了一个可调节的多孔框架,可以通过改变金属离子和配体的选择进行定制。例如,过渡金属如铜、锌和钴因其能够形成稳定的配位络合物而被广泛使用。配体的选择也起着至关重要的作用,因为它们决定了最终聚合物的连接性和维度。因此,coordination polymers(配位聚合物)可以表现出多样的结构特征,从一维链到二维层和三维框架。coordination polymers(配位聚合物)的合成可以通过多种方法实现,包括溶剂热法、水热法和机械化学法。每种方法都有其独特的优点,并允许对反应条件进行精确控制。例如,溶剂热合成涉及将金属盐和有机配体溶解在溶剂中,并在密封容器中加热混合物。该方法通常导致高质量的晶体,适合用于单晶X射线衍射研究,这对于确定聚合物内原子的精确排列至关重要。另一方面,机械化学合成是一种更环保的方法,不需要溶剂,使其成为可持续材料开发的吸引人选择。coordination polymers(配位聚合物)的潜在应用广泛且多样。其中一个最有前景的领域是气体存储,特别是氢气和二氧化碳。由于其可调节的孔隙率,coordination polymers(配位聚合物)可以设计为选择性吸附特定气体,使其成为能源存储和环境修复的理想候选者。此外,它们的催化性质也得到了广泛研究,许多coordination polymers(配位聚合物)在各种化学反应中表现出高催化活性,包括氧化和还原过程。在药物传递领域,coordination polymers(配位聚合物)因其生物相容性和包封治疗剂的能力而展现出巨大潜力。通过修改这些聚合物的表面性质,研究人员可以增强药物释放特性并靶向特定组织或细胞,从而改善治疗效果。总之,coordination polymers(配位聚合物)代表了一类具有独特结构和性质的显著材料。它们通过金属离子和有机配体的配位形成复杂网络的能力,为气体存储、催化和药物传递等创新应用开辟了无数可能性。随着该领域研究的不断推进,我们可以期待看到更多激动人心的发展,利用coordination polymers(配位聚合物)的潜力来应对科学和技术中一些最紧迫的挑战。
相关单词