coordination number

简明释义

配位数

英英释义

The coordination number is the number of atoms, ions, or molecules that a central atom or ion can bond with in a complex or crystal structure.

配位数是指在一个配合物或晶体结构中,中心原子或离子可以与多少个原子、离子或分子结合。

例句

1.In organometallic chemistry, the coordination number 配位数 is crucial for understanding the reactivity of the metal center.

在有机金属化学中,coordination number 配位数对理解金属中心的反应性至关重要。

2.In a coordination compound, the central atom's coordination number 配位数 determines how many ligands can attach to it.

在配位化合物中,中心原子的coordination number 配位数决定了可以附着的配体数量。

3.The coordination number 配位数 can affect the color and stability of a complex.

配位数coordination number 配位数可以影响复杂物的颜色和稳定性。

4.The coordination number 配位数 of transition metals often varies depending on the size and charge of the ligands.

过渡金属的coordination number 配位数通常会根据配体的大小和电荷而变化。

5.For octahedral complexes, the typical coordination number 配位数 is six.

对于八面体配合物,典型的coordination number 配位数是六。

作文

In the field of chemistry, the term coordination number refers to the number of ligand atoms that are directly bonded to a central metal atom in a coordination complex. Understanding the concept of coordination number is crucial for chemists as it plays a significant role in determining the geometry and reactivity of the complex. Ligands can vary in size, charge, and bonding properties, which means that the coordination number can also differ based on these factors. For instance, a metal ion with a coordination number of six typically forms an octahedral geometry, whereas a coordination number of four can lead to either a tetrahedral or square planar arrangement.The importance of coordination number extends beyond theoretical chemistry; it has practical implications in various fields such as materials science, biochemistry, and catalysis. In biochemistry, for example, the coordination number can influence the function of metalloproteins. These proteins often contain metal ions at their active sites, and the specific coordination number can affect how these proteins interact with substrates and facilitate biochemical reactions. A classic example is hemoglobin, which contains iron at its center. The coordination number of iron in hemoglobin is six, allowing it to bind to oxygen molecules effectively.Moreover, the study of coordination number is vital in the development of new materials. Researchers are continuously exploring how different coordination numbers can lead to unique properties in metal-organic frameworks (MOFs) and coordination polymers. These materials have potential applications in gas storage, separation technologies, and catalysis due to their tunable structures and high surface areas. By manipulating the coordination number through the choice of metal ions and ligands, scientists can design materials with specific characteristics tailored to particular applications.In addition to its applications in chemistry and materials science, the concept of coordination number also finds relevance in environmental science. Metal ions in the environment can interact with various ligands present in soil and water, affecting their mobility and bioavailability. Understanding the coordination number helps researchers predict the behavior of heavy metals and other contaminants in natural systems, leading to better strategies for remediation and pollution control.In conclusion, the coordination number is a fundamental concept in chemistry that influences the structure, reactivity, and properties of coordination complexes. Its significance spans across various disciplines, including biochemistry, materials science, and environmental science. By mastering the concept of coordination number, chemists and researchers can unlock new avenues for innovation and discovery in their respective fields. Whether it is designing new catalysts, understanding biological processes, or addressing environmental challenges, the coordination number remains a key parameter that shapes our understanding of chemical interactions and material properties.

在化学领域,术语配位数指的是在配位复合物中直接与中心金属原子结合的配体原子数量。理解配位数的概念对化学家来说至关重要,因为它在确定复合物的几何形状和反应性方面发挥着重要作用。配体可以在大小、电荷和结合特性上有所不同,这意味着配位数也可能根据这些因素而有所不同。例如,配位数为六的金属离子通常形成八面体几何结构,而配位数为四则可以导致四面体或方平面排列。配位数的重要性超越了理论化学;它在材料科学、生物化学和催化等多个领域具有实际意义。例如,在生物化学中,配位数可以影响金属蛋白的功能。这些蛋白质通常在其活性位点含有金属离子,而特定的配位数可以影响这些蛋白质如何与底物相互作用并促进生化反应。一个经典的例子是血红蛋白,它的中心含有铁。血红蛋白中铁的配位数为六,使其能够有效地与氧分子结合。此外,配位数的研究在新材料的发展中至关重要。研究人员不断探索不同的配位数如何导致金属有机框架(MOFs)和配位聚合物中的独特性质。这些材料由于其可调结构和高表面积而在气体存储、分离技术和催化中具有潜在应用。通过选择金属离子和配体来操纵配位数,科学家们可以设计出具有特定特征的材料,以满足特定应用的需求。除了在化学和材料科学中的应用外,配位数的概念在环境科学中也具有相关性。环境中的金属离子可以与土壤和水中存在的各种配体相互作用,影响其迁移性和生物可利用性。理解配位数有助于研究人员预测重金属和其他污染物在自然系统中的行为,从而制定更好的修复和污染控制策略。总之,配位数是化学中的一个基本概念,影响配位复合物的结构、反应性和性质。它的重要性跨越多个学科,包括生物化学、材料科学和环境科学。通过掌握配位数的概念,化学家和研究人员可以在各自的领域中开辟创新和发现的新途径。无论是设计新催化剂、理解生物过程,还是应对环境挑战,配位数始终是塑造我们对化学相互作用和材料性质理解的关键参数。