chemical thermodynamics
简明释义
化学热力学
英英释义
Chemical thermodynamics is the branch of physical chemistry that deals with the relationships between heat, work, and energy in chemical processes. | 化学热力学是物理化学的一个分支,研究化学过程中的热量、功和能量之间的关系。 |
例句
1.The principles of chemical thermodynamics 化学热力学 are applied in developing new materials.
在开发新材料时应用了化学热力学 chemical thermodynamics的原理。
2.A thorough grasp of chemical thermodynamics 化学热力学 is essential for anyone working in the field of physical chemistry.
对于任何在物理化学领域工作的人来说,彻底掌握化学热力学 chemical thermodynamics是必不可少的。
3.In our chemistry class, we learned about chemical thermodynamics 化学热力学 and its importance in predicting reaction spontaneity.
在我们的化学课上,我们学习了化学热力学 chemical thermodynamics及其在预测反应自发性中的重要性。
4.Understanding chemical thermodynamics 化学热力学 helps engineers design more efficient chemical reactors.
理解化学热力学 chemical thermodynamics有助于工程师设计更高效的化学反应器。
5.The study of chemical thermodynamics 化学热力学 allows scientists to understand energy changes during chemical reactions.
对化学热力学 chemical thermodynamics的研究使科学家能够理解化学反应中的能量变化。
作文
Chemical thermodynamics is a branch of physical chemistry that deals with the relationship between chemical reactions and energy changes. It provides a framework for understanding how energy transformations occur during chemical processes, allowing scientists to predict the feasibility and extent of reactions. In essence, chemical thermodynamics (化学热力学) focuses on the laws governing the conversion of energy within chemical systems, enabling us to comprehend the behavior of matter at a molecular level.One of the fundamental concepts in chemical thermodynamics (化学热力学) is the idea of energy conservation, often referred to as the first law of thermodynamics. This law states that energy cannot be created or destroyed; it can only be transformed from one form to another. For example, when a chemical reaction occurs, the energy stored in the bonds of reactants is released or absorbed as products are formed. Understanding this principle is crucial for chemists, as it allows them to calculate the energy changes associated with various reactions, which can inform decisions about reaction conditions and pathways.Another important aspect of chemical thermodynamics (化学热力学) is the concept of entropy, which is a measure of disorder or randomness in a system. The second law of thermodynamics states that in any energy transfer, the total entropy of a closed system will always increase over time. This means that natural processes tend to move towards a state of greater disorder. In the context of chemical reactions, this principle helps explain why certain reactions occur spontaneously while others do not. By analyzing the changes in entropy associated with a reaction, chemists can predict whether a reaction will proceed and how far it will go.In addition to these laws, chemical thermodynamics (化学热力学) employs several key equations, such as the Gibbs free energy equation, which combines enthalpy and entropy to assess the spontaneity of a reaction. The Gibbs free energy change (ΔG) indicates whether a reaction is thermodynamically favorable: if ΔG is negative, the reaction can occur spontaneously; if positive, it is non-spontaneous. This equation is particularly useful in biochemical processes, where understanding energy changes is essential for grasping metabolic pathways.The applications of chemical thermodynamics (化学热力学) extend beyond the laboratory. In industrial chemistry, for instance, knowledge of thermodynamic principles is vital for optimizing reaction conditions to maximize yield and minimize energy consumption. Environmental scientists also utilize these concepts to understand the energy dynamics of ecosystems and the impact of human activities on natural processes.Moreover, chemical thermodynamics (化学热力学) plays a critical role in materials science, where researchers explore the stability and properties of new compounds. By applying thermodynamic principles, scientists can design materials with desired characteristics, leading to innovations in technology and engineering.In conclusion, chemical thermodynamics (化学热力学) is an essential field of study that bridges chemistry and physics, providing insights into the energy changes associated with chemical reactions. Its principles guide scientists in predicting reaction behavior, optimizing processes, and developing new materials. As we continue to explore the complexities of matter and energy, the significance of chemical thermodynamics (化学热力学) will only grow, shaping the future of scientific discovery and technological advancement.
化学热力学是物理化学的一个分支,研究化学反应与能量变化之间的关系。它为理解在化学过程中能量转化如何发生提供了框架,使科学家能够预测反应的可行性和程度。本质上,化学热力学(chemical thermodynamics)关注的是控制化学系统内能量转换的法则,使我们能够理解物质在分子层面的行为。在化学热力学(chemical thermodynamics)中,一个基本概念是能量守恒的思想,通常称为热力学第一定律。该定律指出,能量不能被创造或毁灭;它只能从一种形式转化为另一种形式。例如,当化学反应发生时,反应物中的键所储存的能量会在生成产物时释放或吸收。理解这一原理对于化学家至关重要,因为它使他们能够计算与各种反应相关的能量变化,这可以为反应条件和途径的选择提供信息。另一个重要的方面是化学热力学(chemical thermodynamics)的熵的概念,熵是系统中无序或随机性的度量。热力学第二定律指出,在任何能量转移中,封闭系统的总熵总是随着时间的推移而增加。这意味着自然过程倾向于朝着更大无序状态发展。在化学反应的背景下,这一原理有助于解释为什么某些反应自发发生,而其他反应则不发生。通过分析与反应相关的熵变化,化学家可以预测反应是否会进行,以及进行到何种程度。除了这些定律,化学热力学(chemical thermodynamics)还使用几个关键方程,例如吉布斯自由能方程,该方程将焓和熵结合起来以评估反应的自发性。吉布斯自由能变化(ΔG)表明反应是否在热力学上是有利的:如果ΔG为负,则反应可以自发发生;如果为正,则反应是非自发的。这个方程在生物化学过程中尤其有用,因为理解能量变化对于掌握代谢途径至关重要。化学热力学(chemical thermodynamics)的应用超越了实验室。例如,在工业化学中,了解热力学原理对于优化反应条件以最大化产率和最小化能耗至关重要。环境科学家也利用这些概念来理解生态系统的能量动态以及人类活动对自然过程的影响。此外,化学热力学(chemical thermodynamics)在材料科学中也发挥着关键作用,研究人员探索新化合物的稳定性和特性。通过应用热力学原理,科学家可以设计具有所需特性的材料,从而推动技术和工程领域的创新。总之,化学热力学(chemical thermodynamics)是一个重要的研究领域,它连接了化学和物理,为化学反应的能量变化提供了深入的见解。它的原理指导科学家预测反应行为、优化过程和开发新材料。随着我们继续探索物质和能量的复杂性,化学热力学(chemical thermodynamics)的重要性只会增加,塑造科学发现和技术进步的未来。