chemical bond

简明释义

化学键

英英释义

A chemical bond is a lasting attraction between atoms, ions, or molecules that enables the formation of chemical compounds.

化学键是原子、离子或分子之间持久的吸引力,使得化合物的形成成为可能。

例句

1.The strength of a chemical bond 化学键 determines the stability of a molecule.

化学键的强度决定了分子的稳定性。

2.The chemical bonds 化学键 in organic molecules can be quite complex.

有机分子中的化学键可能相当复杂。

3.Ionic compounds are held together by chemical bonds 化学键 between positively and negatively charged ions.

离子化合物通过正负电荷离子之间的化学键结合在一起。

4.Breaking a chemical bond 化学键 requires energy input.

打破化学键需要输入能量。

5.When water is formed, two hydrogen atoms create a chemical bond 化学键 with one oxygen atom.

当水形成时,两个氢原子与一个氧原子形成了化学键。

作文

In the world of chemistry, understanding the concept of a chemical bond is fundamental to grasping how substances interact and form new materials. A chemical bond refers to the attractive force that holds atoms together in a molecule or compound. This force arises from the interactions between the electrons of different atoms, and it is essential for the stability of matter. There are several types of chemical bonds, including ionic bonds, covalent bonds, and metallic bonds, each with unique characteristics and implications for the properties of the resulting materials.Ionic bonds occur when electrons are transferred from one atom to another, leading to the formation of charged ions. For example, when sodium (Na) reacts with chlorine (Cl), sodium donates an electron to chlorine, resulting in the formation of Na+ and Cl- ions. The electrostatic attraction between these oppositely charged ions creates a strong chemical bond, resulting in the formation of sodium chloride, or table salt. This type of bond typically occurs between metals and nonmetals and is characterized by high melting and boiling points due to the strong attractions between the ions.Covalent bonds, on the other hand, involve the sharing of electrons between atoms. This type of bond is common among nonmetals, where atoms come together to achieve a full outer shell of electrons, which is crucial for stability. For instance, in a water molecule (H2O), each hydrogen atom shares an electron with the oxygen atom, resulting in two chemical bonds. The shared electrons allow all participating atoms to attain a more stable electronic configuration. Covalent bonds can be single, double, or even triple, depending on the number of shared electron pairs, which significantly influences the properties of the compounds formed.Metallic bonds present another fascinating aspect of chemical bonding. In metals, atoms release some of their electrons to form a 'sea of electrons' that are free to move around, which allows for conductivity and malleability. The attraction between the positively charged metal ions and the delocalized electrons creates a strong chemical bond that is responsible for many of the physical properties of metals, such as their ability to conduct electricity and heat.Understanding chemical bonds is not just academically interesting; it has practical implications in various fields, including medicine, materials science, and environmental science. For instance, the development of new drugs often relies on knowledge of how chemical bonds work at the molecular level to design compounds that can effectively interact with biological targets. Similarly, advancements in materials science depend on manipulating chemical bonds to create stronger, lighter, and more durable materials for use in technology and construction.In conclusion, the concept of a chemical bond is central to the study of chemistry and the understanding of how different elements combine to form the vast array of substances we encounter in our daily lives. By exploring the different types of chemical bonds and their properties, we gain insight into the very nature of matter and the interactions that govern our world. As we continue to learn more about chemical bonds, we unlock the potential to innovate and improve various aspects of life, from healthcare to technology, making it an essential topic in both education and research.

在化学的世界中,理解“化学键”的概念对于掌握物质如何相互作用并形成新材料是基础。化学键指的是将原子结合在一起形成分子或化合物的吸引力。这种力源于不同原子之间电子的相互作用,对于物质的稳定性至关重要。化学键有几种类型,包括离子键、共价键和金属键,每种都有独特的特性和对所形成材料性质的影响。离子键发生在电子从一个原子转移到另一个原子时,导致带电离子的形成。例如,当钠(Na)与氯(Cl)反应时,钠将一个电子捐赠给氯,从而形成Na+和Cl-离子。这些带有相反电荷的离子之间的静电吸引产生了强大的化学键,形成氯化钠,即食盐。这种类型的键通常发生在金属和非金属之间,其特点是由于离子之间的强吸引力而具有高熔点和沸点。另一方面,共价键涉及原子之间电子的共享。这种类型的键在非金属中很常见,原子通过结合在一起以实现完整的外层电子壳,这对于稳定性至关重要。例如,在水分子(H2O)中,每个氢原子与氧原子共享一个电子,从而形成两个化学键。共享的电子使所有参与的原子都获得更稳定的电子配置。共价键可以是单键、双键甚至三键,具体取决于共享电子对的数量,这显著影响所形成化合物的性质。金属键呈现出化学键的另一个迷人方面。在金属中,原子释放一些电子形成“电子海”,这些电子可以自由移动,这使得金属具备导电性和可锻性。正电荷的金属离子与去局域化电子之间的吸引力产生了强大的化学键,这是金属许多物理特性的原因,例如导电和导热能力。理解化学键不仅在学术上有趣;它在医学、材料科学和环境科学等多个领域具有实际意义。例如,新药的开发通常依赖于对化学键如何在分子水平上工作的知识,以设计能够有效与生物靶点相互作用的化合物。同样,材料科学的进步依赖于操纵化学键来创造更强、更轻、更耐用的材料,用于技术和建筑。总之,化学键的概念是化学研究的核心,也是理解不同元素如何结合形成我们日常生活中遇到的各种物质的关键。通过探索不同类型的化学键及其特性,我们深入了解物质的本质以及支配我们世界的相互作用。随着我们继续学习更多关于化学键的知识,我们解锁了创新和改善生活各个方面的潜力,从医疗保健到技术,使其成为教育和研究中的一个重要主题。