brownian movement

简明释义

布朗运动

英英释义

Brownian movement refers to the random motion of microscopic particles suspended in a fluid (liquid or gas) resulting from collisions with the fast-moving molecules in the fluid.

布朗运动是指悬浮在流体(液体或气体)中的微观粒子由于与流体中快速移动的分子碰撞而产生的随机运动。

例句

1.The random motion of dust particles in sunlight is an illustration of brownian movement 布朗运动.

阳光下尘埃颗粒的随机运动是brownian movement 布朗运动的一个例证。

2.In a physics lab, students observed brownian movement 布朗运动 using a microscope.

在物理实验室,学生们使用显微镜观察了brownian movement 布朗运动

3.Scientists study brownian movement 布朗运动 to understand the behavior of particles at the microscopic level.

科学家研究brownian movement 布朗运动以理解微观层面上粒子的行为。

4.The movement of pollen grains in water is a classic example of brownian movement 布朗运动.

水中花粉颗粒的运动是一个经典的brownian movement 布朗运动的例子。

5.Understanding brownian movement 布朗运动 is essential for advancements in nanotechnology.

理解brownian movement 布朗运动对纳米技术的进步至关重要。

作文

The phenomenon known as brownian movement refers to the random motion of particles suspended in a fluid (liquid or gas) resulting from their collision with fast-moving molecules in the fluid. This concept was first observed by the botanist Robert Brown in 1827 when he was studying pollen grains in water. The unpredictable and erratic paths taken by these particles prompted further investigation into the nature of matter and its behavior at microscopic levels. Understanding brownian movement is crucial for various scientific fields, including physics, chemistry, and biology.In physics, brownian movement serves as a fundamental illustration of the kinetic theory of matter, which posits that all matter is composed of tiny particles that are in constant motion. This motion can be affected by temperature, with higher temperatures leading to increased energy and movement of the particles. For example, if we heat a container of water, the molecules move faster, resulting in more vigorous brownian movement of any particles suspended within it.Chemically, the understanding of brownian movement has implications for reactions occurring in solutions. The random motion of solute particles can influence the rate of reaction, as it affects how often and how forcefully the reactants collide. This is particularly important in fields such as pharmacology, where the effectiveness of drug delivery systems can be influenced by the brownian movement of particles in the bloodstream.In biology, brownian movement plays a significant role in cellular processes. For instance, the movement of nutrients, enzymes, and other biomolecules within cells is often driven by this random motion. Understanding how brownian movement affects cellular dynamics can enhance our knowledge of how cells interact with their environment and respond to various stimuli.Moreover, brownian movement is not just limited to microscopic particles; it also has macroscopic implications. In environmental science, for example, the dispersion of pollutants in air or water can be partly explained by brownian movement. As pollutants are subjected to the chaotic motion of surrounding molecules, they can spread out and affect larger areas than initially anticipated.In summary, brownian movement is a fundamental concept that illustrates the inherent randomness of particle motion in fluids. Its implications span across multiple disciplines, providing insights into the behavior of matter on both microscopic and macroscopic scales. By studying brownian movement, scientists can better understand the principles that govern physical, chemical, and biological processes, ultimately leading to advancements in technology and medicine. The exploration of this phenomenon not only enriches our comprehension of the natural world but also opens doors to innovative applications that can improve our quality of life.

被称为布朗运动的现象是指悬浮在流体(液体或气体)中的颗粒因与流体中快速移动的分子碰撞而产生的随机运动。这个概念最早是由植物学家罗伯特·布朗于1827年观察到的,当时他正在研究水中的花粉颗粒。这些颗粒所采取的不可预测和不规则的路径促使人们进一步研究物质的性质及其在微观层面的行为。理解布朗运动对物理学、化学和生物学等多个科学领域至关重要。在物理学中,布朗运动作为动理论的基本例证,说明所有物质都由微小的粒子组成,这些粒子处于不断运动之中。这种运动会受到温度的影响,温度越高,粒子的能量和运动越剧烈。例如,如果我们加热一容器中的水,分子移动得更快,从而导致悬浮在其中的任何颗粒的布朗运动更加剧烈。在化学上,理解布朗运动对溶液中发生的反应有重要意义。溶质颗粒的随机运动可以影响反应速率,因为它影响反应物之间的碰撞频率和碰撞强度。这在药理学等领域尤为重要,因为药物传递系统的有效性可能受到血液中颗粒的布朗运动的影响。在生物学中,布朗运动在细胞过程中的作用也非常重要。例如,营养物质、酶和其他生物分子在细胞内的运动往往是由这种随机运动驱动的。理解布朗运动如何影响细胞动态,可以增强我们对细胞如何与环境相互作用以及如何响应各种刺激的认识。此外,布朗运动不仅限于微观颗粒;它还具有宏观意义。在环境科学中,例如,污染物在空气或水中的扩散部分可以通过布朗运动进行解释。当污染物受到周围分子的混乱运动影响时,它们可以扩散并影响比最初预期的更大区域。总之,布朗运动是一个基本概念,说明了流体中颗粒运动的固有随机性。它的影响跨越多个学科,为我们提供了对微观和宏观尺度上物质行为的深入理解。通过研究布朗运动,科学家们能够更好地理解支配物理、化学和生物过程的原理,最终推动技术和医学的进步。对这一现象的探索不仅丰富了我们对自然世界的理解,还为改善我们生活质量的创新应用开辟了新的道路。