brownian motion

简明释义

布朗运动

英英释义

Brownian motion is the random movement of microscopic particles suspended in a fluid (liquid or gas) resulting from their collision with fast-moving molecules in the fluid.

布朗运动是指悬浮在流体(液体或气体)中的微小颗粒由于与流体中快速移动的分子碰撞而产生的随机运动。

例句

1.In financial modeling, brownian motion can represent stock price fluctuations over time, which is termed 布朗运动.

在金融建模中,布朗运动可以表示股票价格随时间的波动,这被称为布朗运动

2.Scientists use brownian motion to explain how small particles disperse in a liquid, known as 布朗运动.

科学家使用布朗运动来解释小颗粒在液体中如何分散,这被称为布朗运动

3.During the experiment, we observed brownian motion under the microscope, illustrating 布朗运动 in action.

在实验过程中,我们在显微镜下观察到布朗运动,展示了布朗运动的实际情况。

4.The particles in the fluid exhibit brownian motion, which is the random movement caused by collisions with molecules, resulting in 布朗运动.

流体中的粒子表现出布朗运动,这是由于与分子碰撞引起的随机运动,导致布朗运动

5.The study of brownian motion has significant implications in physics and chemistry, particularly in understanding diffusion processes, referred to as 布朗运动.

布朗运动的研究在物理和化学中具有重要意义,特别是在理解扩散过程时,被称为布朗运动

作文

The concept of brownian motion is a fundamental phenomenon in the field of physics, particularly in the study of particles suspended in fluids. Named after the botanist Robert Brown, who first observed this random movement in pollen grains suspended in water, brownian motion describes the erratic and unpredictable movement of microscopic particles as they collide with molecules of the surrounding medium. This process not only provides insights into the behavior of small particles but also has significant implications across various scientific disciplines, including chemistry, biology, and even finance.To better understand brownian motion, it is essential to consider its origin. In 1827, Robert Brown noticed that pollen grains in water moved in an irregular manner, which he initially attributed to life within the grains. However, further investigation revealed that this motion was due to the constant bombardment of water molecules, which are in perpetual motion themselves. This discovery laid the groundwork for the kinetic theory of gases and helped scientists comprehend the nature of matter at a microscopic level.One of the key characteristics of brownian motion is its randomness. The path taken by a particle undergoing this motion is not linear or predictable; rather, it resembles a chaotic dance influenced by countless collisions with surrounding molecules. This unpredictability can be modeled mathematically, leading to the development of stochastic processes, which have applications in various fields such as statistical mechanics and thermodynamics.In chemistry, brownian motion plays a crucial role in diffusion processes. When substances mix, the random movement of particles facilitates their spread throughout a medium. For instance, when a drop of ink is added to water, the ink molecules move randomly, gradually dispersing until evenly distributed. This phenomenon is not only important in understanding chemical reactions but also in biological systems where nutrient transport and cellular processes depend on diffusion driven by brownian motion.Furthermore, brownian motion has found applications in finance, particularly in the modeling of stock prices and market behaviors. The randomness inherent in brownian motion mirrors the unpredictable nature of financial markets, leading to the development of models such as the Black-Scholes model, which uses this concept to price options and assess risk.In summary, brownian motion is a remarkable phenomenon that illustrates the intricate dance of particles at the microscopic level. Its discovery has paved the way for advancements in various scientific fields, enhancing our understanding of the natural world. From explaining diffusion in chemistry to modeling fluctuations in financial markets, the implications of brownian motion are far-reaching and continue to inspire research and exploration. As we delve deeper into the complexities of matter and motion, the significance of brownian motion remains a testament to the beauty of science and its ability to uncover the mysteries of our universe.

布朗运动是物理学领域中的一个基本现象,特别是在研究悬浮在流体中的粒子时。这个概念以植物学家罗伯特·布朗的名字命名,他首次观察到悬浮在水中的花粉颗粒的随机运动。布朗运动描述了微观粒子由于与周围介质的分子碰撞而产生的不规则和不可预测的运动。这一过程不仅提供了对小粒子行为的深入了解,而且在化学、生物学甚至金融等多个科学领域具有重要意义。要更好地理解布朗运动,首先需要考虑它的起源。1827年,罗伯特·布朗注意到水中的花粉颗粒以不规则的方式移动,最初他将这种运动归因于花粉颗粒中的生命。然而,进一步的研究发现,这种运动是由于水分子之间的持续轰击造成的,而水分子本身也在不断运动。这一发现为气体的动理论奠定了基础,并帮助科学家理解微观层面物质的性质。布朗运动的一个关键特征是其随机性。经历这种运动的粒子所走的路径并非线性或可预测的;相反,它更像是一种受到无数与周围分子碰撞影响的混乱舞蹈。这种不可预测性可以通过数学建模来描述,导致随机过程的发展,这在统计力学和热力学等各个领域都有应用。在化学中,布朗运动在扩散过程中发挥着至关重要的作用。当物质混合时,粒子的随机运动促进了它们在介质中的扩散。例如,当一滴墨水被加入水中时,墨水分子随机移动,逐渐分散直到均匀分布。这一现象不仅在理解化学反应中重要,也在生物系统中,其中营养物质运输和细胞过程依赖于由布朗运动驱动的扩散。此外,布朗运动在金融领域也找到了应用,特别是在股票价格和市场行为的建模中。布朗运动中固有的随机性反映了金融市场的不可预测性,导致了如Black-Scholes模型等模型的发展,该模型利用这一概念来定价期权和评估风险。总之,布朗运动是一个非凡的现象,展示了微观层面粒子的复杂舞蹈。它的发现为各个科学领域的进步铺平了道路,增强了我们对自然界的理解。从解释化学中的扩散到建模金融市场的波动,布朗运动的影响深远,继续激励着研究和探索。当我们深入探讨物质和运动的复杂性时,布朗运动的重要性仍然证明了科学的美丽及其揭示我们宇宙奥秘的能力。

相关单词

motion

motion详解:怎么读、什么意思、用法