bravais space lattice

简明释义

布拉维空间晶格

英英释义

A Bravais space lattice is a three-dimensional arrangement of points in space, where each point has an identical environment, and it describes the periodic structure of a crystal.

布拉维空间晶格是空间中点的三维排列,每个点具有相同的环境,描述了晶体的周期性结构。

例句

1.Understanding the symmetry of a bravais space lattice 布拉维空间格子 is crucial for predicting crystal behavior.

理解bravais space lattice 布拉维空间格子的对称性对于预测晶体行为至关重要。

2.The seven types of bravais space lattices 布拉维空间格子 help classify all possible crystal structures.

七种类型的bravais space lattices 布拉维空间格子有助于分类所有可能的晶体结构。

3.The bravais space lattice 布拉维空间格子 defines the periodic arrangement of atoms in a crystal.

bravais space lattice 布拉维空间格子定义了晶体中原子的周期性排列。

4.Different types of bravais space lattices 布拉维空间格子 can lead to various physical properties in materials.

不同类型的bravais space lattices 布拉维空间格子可能导致材料的各种物理特性。

5.In crystallography, a material's properties can be understood by analyzing its bravais space lattice 布拉维空间格子.

在晶体学中,通过分析材料的bravais space lattice 布拉维空间格子可以理解其性质。

作文

The concept of a Bravais space lattice is fundamental in the field of crystallography and solid-state physics. A Bravais space lattice is defined as an infinite array of discrete points that are arranged in a periodic pattern in three-dimensional space. Each point in this lattice represents the position of an identical environment, which means that the physical properties of the material can be understood by studying the arrangement of these points. There are 14 distinct types of Bravais space lattices, which can be classified into seven crystal systems based on their symmetry and geometric properties.Understanding Bravais space lattices is crucial for scientists and engineers who work with crystalline materials. These lattices serve as the backbone for determining the structure of crystals. For instance, when a new material is synthesized, researchers often use techniques such as X-ray diffraction to analyze its crystal structure. By interpreting the diffraction patterns, they can deduce the underlying Bravais space lattice and gain insights into the material's properties, such as electrical conductivity, optical behavior, and mechanical strength.The importance of Bravais space lattices extends beyond theoretical studies; they have practical implications in various fields, including materials science, chemistry, and nanotechnology. For example, in semiconductor manufacturing, understanding the Bravais space lattice of silicon is essential for optimizing its electronic properties. The arrangement of atoms within the lattice influences how electrons move through the material, which in turn affects the performance of electronic devices like transistors and diodes.Moreover, the study of Bravais space lattices also plays a significant role in the development of new materials. Researchers are constantly exploring novel crystal structures that could lead to enhanced functionalities. By manipulating the arrangement of atoms within a Bravais space lattice, scientists can design materials with specific properties tailored for applications in energy storage, catalysis, and drug delivery.In summary, the Bravais space lattice is a pivotal concept in understanding the architecture of crystalline solids. Its relevance spans across various scientific disciplines and industries, highlighting the interconnectedness of structure and function in materials. As research continues to advance, the knowledge of Bravais space lattices will undoubtedly contribute to innovations that address some of the most pressing challenges in technology and sustainability today. Ultimately, the exploration of Bravais space lattices not only enriches our understanding of the natural world but also paves the way for future discoveries that could transform our technological landscape.

布拉维空间格子(Bravais space lattice)的概念在晶体学和固态物理学领域中是基础性的。Bravais space lattice 被定义为在三维空间中以周期性模式排列的离散点的无限数组。这个格子中的每个点代表一个相同环境的位置,这意味着通过研究这些点的排列,可以理解材料的物理特性。共有14种不同类型的Bravais space lattices,根据其对称性和几何特性可以将其分类为七种晶体系统。理解Bravais space lattices对于从事晶体材料研究的科学家和工程师至关重要。这些格子作为确定晶体结构的基础。例如,当合成一种新材料时,研究人员通常使用X射线衍射等技术来分析其晶体结构。通过解读衍射图案,他们可以推断出潜在的Bravais space lattice,并深入了解材料的特性,如电导率、光学行为和机械强度。Bravais space lattices的重要性不仅限于理论研究;它们在材料科学、化学和纳米技术等多个领域具有实际意义。例如,在半导体制造中,了解硅的Bravais space lattice对于优化其电子特性至关重要。晶格中的原子排列会影响电子在材料中的移动,这反过来又影响电子设备(如晶体管和二极管)的性能。此外,对Bravais space lattices的研究在新材料的开发中也发挥着重要作用。研究人员不断探索新颖的晶体结构,以期获得增强的功能。通过操控Bravais space lattice中的原子排列,科学家可以设计出具有特定属性的材料,专门用于能源存储、催化和药物输送等应用。总之,Bravais space lattice是理解晶体固体结构的关键概念。它的相关性跨越了各种科学学科和行业,突显了材料中结构与功能之间的相互联系。随着研究的不断推进,对Bravais space lattices的知识无疑将有助于应对当今技术和可持续发展的一些最紧迫的挑战。最终,对Bravais space lattices的探索不仅丰富了我们对自然世界的理解,也为未来可能改变我们技术格局的发现铺平了道路。

相关单词

space

space详解:怎么读、什么意思、用法

lattice

lattice详解:怎么读、什么意思、用法