quadrantal
简明释义
英[kwɒˈdrænt(ə)l]美[kˈwɑːdrəntl]
adj. [数] 象限的;四分圆的;四分仪的
英英释义
Relating to or resembling a quadrant, typically used in mathematics or geometry. | 与象限有关或类似,通常用于数学或几何学。 |
分成四个部分或区域。 |
单词用法
象限坐标 | |
象限角 | |
象限系统 | |
象限测量 |
同义词
二次的 | The quadratic equation can be solved using the quadratic formula. | 二次方程可以使用二次公式求解。 | |
四倍的 | The fourfold increase in production has amazed the industry. | 生产量的四倍增长让整个行业感到惊讶。 |
反义词
线性的 | 线性方程描述了一条直线。 | ||
无界的 | In mathematics, unbounded functions extend infinitely in at least one direction. | 在数学中,无界函数在至少一个方向上无限延伸。 |
例句
1.The vertical crustal movement after the quake is just on the contrary. This shows the characteristics of elastic rebound and the hypocenter is just near the quadrantal intersection.
震后的地壳垂直运动恰好相反,明显地反映了弹性回跳特征,震源也刚好位于四象限交叉点附近。
2.The vertical crustal movement after the quake is just on the contrary. This shows the characteristics of elastic rebound and the hypocenter is just near the quadrantal intersection.
震后的地壳垂直运动恰好相反,明显地反映了弹性回跳特征,震源也刚好位于四象限交叉点附近。
3.The architect designed a building with a quadrantal 四分之一圆形的 entrance to create a unique aesthetic.
建筑师设计了一座带有quadrantal 四分之一圆形的入口的建筑,以创造独特的美感。
4.The artist used a quadrantal 四分之一圆形的 canvas to experiment with circular designs.
艺术家使用了一个quadrantal 四分之一圆形的画布来实验圆形设计。
5.During the physics lecture, we discussed quadrantal 四分之一圆形的 motion in relation to projectile trajectories.
在物理课上,我们讨论了与抛体轨迹相关的quadrantal 四分之一圆形的运动。
6.The quadrantal 四分之一的 section of the pie chart represented the sales in the first quarter.
饼图的quadrantal 四分之一的部分代表了第一季度的销售额。
7.In trigonometry, the angles are often categorized into quadrantal 四分之一周的 angles like 0°, 90°, 180°, and 270°.
在三角学中,角度通常被分类为quadrantal 四分之一周的角度,如0°、90°、180°和270°。
作文
In the realm of mathematics and geometry, the term quadrantal refers to anything related to a quarter of a circle or a right angle. Understanding this concept can greatly enhance our comprehension of various mathematical principles and applications. One of the most common uses of the term quadrantal is in the study of trigonometric functions, where angles are often measured in degrees or radians. A quadrantal angle, for instance, is an angle that is a multiple of 90 degrees, such as 0°, 90°, 180°, and 270°. These angles play a crucial role in defining the unit circle, which is fundamental in trigonometry.The unit circle is a circle with a radius of one centered at the origin of a coordinate system. When we plot quadrantal angles on this circle, we can easily determine the coordinates of points corresponding to these angles. For example, at 0° (or 0 radians), the coordinates are (1, 0); at 90° (or π/2 radians), they are (0, 1); at 180° (or π radians), they are (-1, 0); and at 270° (or 3π/2 radians), they are (0, -1). This visualization allows us to understand the sine and cosine values of these angles more intuitively.Moreover, the concept of quadrantal angles extends beyond just the unit circle. In various fields such as physics and engineering, quadrantal measurements are often used to describe rotational motion or oscillatory systems. For instance, when analyzing the motion of a pendulum, we might refer to its position in terms of quadrantal angles to simplify calculations and predictions about its behavior over time.In addition to its mathematical significance, the term quadrantal also has applications in other disciplines. In navigation, for example, understanding quadrantal directions—north, east, south, and west—can be vital for determining routes and positions. Similarly, in computer graphics, quadrantal angles are used to define rotations and transformations of objects within a digital space. By mastering the concept of quadrantal angles, we equip ourselves with a powerful tool that can be applied across various domains.Furthermore, the importance of quadrantal angles can be seen in everyday life. For instance, when constructing buildings or designing furniture, architects and designers often use quadrantal measurements to ensure that structures are level and aligned correctly. Understanding how to work with quadrantal angles can lead to improved accuracy and efficiency in these projects.In conclusion, the term quadrantal encompasses a range of meanings and applications that extend far beyond basic geometry. Whether in mathematics, physics, engineering, navigation, or design, the concept of quadrantal angles plays a significant role in our understanding of the world around us. By studying and applying this concept, we not only enhance our mathematical skills but also gain valuable insights into various practical scenarios. Therefore, mastering the term quadrantal is essential for anyone looking to deepen their knowledge in mathematics and its real-world applications.
在数学和几何学的领域中,术语quadrantal指的是与圆的四分之一或直角相关的任何事物。理解这一概念可以极大地增强我们对各种数学原理和应用的理解。术语quadrantal的一个常见用法是在三角函数的研究中,角度通常以度或弧度来测量。例如,quadrantal角是指90度的倍数,如0°、90°、180°和270°。这些角在定义单位圆时发挥着至关重要的作用,而单位圆在三角学中是基础。单位圆是一个半径为1的圆,中心位于坐标系的原点。当我们在这个圆上绘制quadrantal角时,我们可以轻松确定与这些角对应的点的坐标。例如,在0°(或0弧度)时,坐标是(1, 0);在90°(或π/2弧度)时,坐标是(0, 1);在180°(或π弧度)时,坐标是(-1, 0);在270°(或3π/2弧度)时,坐标是(0, -1)。这种可视化使我们更直观地理解这些角的正弦和余弦值。此外,quadrantal角的概念不仅仅局限于单位圆。在物理和工程等多个领域中,quadrantal测量通常用于描述旋转运动或振荡系统。例如,在分析摆的运动时,我们可能会用quadrantal角度来描述其位置,从而简化对其行为的计算和预测。除了其数学意义外,术语quadrantal在其他学科中也有应用。例如,在导航中,理解quadrantal方向(北、东、南和西)对于确定路线和位置至关重要。同样,在计算机图形学中,quadrantal角用于定义对象在数字空间内的旋转和变换。通过掌握quadrantal角的概念,我们为自己提供了一个强大的工具,可以在各个领域中应用。此外,quadrantal角的重要性在日常生活中也得到了体现。例如,在建造建筑物或设计家具时,建筑师和设计师经常使用quadrantal测量来确保结构水平和对齐正确。理解如何处理quadrantal角可以提高这些项目的准确性和效率。总之,术语quadrantal包含了一系列超越基本几何的含义和应用。无论是在数学、物理、工程、导航还是设计中,quadrantal角的概念在我们理解周围世界方面都发挥着重要作用。通过学习和应用这一概念,我们不仅增强了数学技能,还获得了对各种实际场景的宝贵见解。因此,掌握术语quadrantal对任何希望深化数学及其现实应用知识的人来说都是至关重要的。