asymmetric carbon atom

简明释义

不对称碳原子

英英释义

An asymmetric carbon atom, also known as a chiral carbon, is a carbon atom that is bonded to four different groups or atoms, leading to non-superimposable mirror images, known as enantiomers.

不对称碳原子,也称为手性碳,是指一个碳原子与四个不同的基团或原子相连,导致其存在无法重叠的镜像,即对映体。

例句

1.In organic chemistry, a molecule with one or more asymmetric carbon atom 不对称碳原子 can exhibit optical activity.

在有机化学中,具有一个或多个不对称碳原子的分子可以表现出光学活性。

2.Many pharmaceuticals are designed around asymmetric carbon atom 不对称碳原子 configurations for better efficacy.

许多药物是围绕不对称碳原子的构型设计的,以提高疗效。

3.When drawing the structure of glucose, you will notice several asymmetric carbon atom 不对称碳原子 in its ring form.

在绘制葡萄糖的结构时,你会注意到其环状形式中有几个不对称碳原子

4.Biological molecules like amino acids typically contain at least one asymmetric carbon atom 不对称碳原子.

生物分子如氨基酸通常至少含有一个不对称碳原子

5.The presence of an asymmetric carbon atom 不对称碳原子 in a compound often leads to enantiomers.

化合物中存在一个不对称碳原子往往会导致对映体的形成。

作文

In the field of chemistry, the concept of an asymmetric carbon atom is crucial for understanding the three-dimensional structures of molecules. An asymmetric carbon atom is defined as a carbon atom that is attached to four different groups or atoms, leading to non-superimposable mirror images known as enantiomers. This characteristic plays a significant role in stereochemistry, which is the study of the spatial arrangement of atoms within molecules. The importance of asymmetric carbon atoms can be observed in various natural and synthetic compounds. For instance, many pharmaceuticals contain chiral molecules that are derived from asymmetric carbon atoms. The presence of an asymmetric carbon atom can dramatically affect the biological activity of a drug. Different enantiomers of a chiral drug can have different effects on the body; one may be therapeutically beneficial while the other could be harmful or ineffective. This highlights the necessity for chemists to carefully consider the stereochemistry of their compounds during drug development.Furthermore, the existence of asymmetric carbon atoms leads to a phenomenon known as optical activity. Compounds with asymmetric carbon atoms can rotate plane-polarized light, a property that is measured using polarimetry. The direction and degree of rotation can provide valuable information about the concentration and identity of chiral substances in a solution. This technique is widely used in laboratories to analyze the purity and composition of chiral compounds.In addition to their significance in pharmaceuticals, asymmetric carbon atoms are also prevalent in natural products. Many biologically active molecules, including amino acids and sugars, contain asymmetric carbon atoms. The chirality of these molecules often contributes to their specific interactions with biological systems, such as enzymes and receptors. For example, the amino acid L-alanine, which contains an asymmetric carbon atom, is utilized by living organisms to build proteins, whereas its mirror image D-alanine does not participate in protein synthesis in the same way.The study of asymmetric carbon atoms is not limited to organic chemistry; it extends into fields like biochemistry and medicinal chemistry. Researchers are continuously exploring new methods for synthesizing chiral compounds with asymmetric carbon atoms to enhance their efficacy and reduce side effects in drug formulations. As science progresses, the understanding of asymmetric carbon atoms will undoubtedly lead to innovations in medicine and biotechnology.In conclusion, asymmetric carbon atoms are fundamental to the understanding of molecular chirality and have profound implications in various scientific fields. Their unique properties influence the behavior and interaction of molecules, particularly in the context of drug development and biological activity. As we continue to explore the complexities of chemistry, the role of asymmetric carbon atoms will remain a vital area of study, shedding light on the intricacies of life at the molecular level.

在化学领域,不对称碳原子的概念对于理解分子的三维结构至关重要。不对称碳原子被定义为一个与四个不同的基团或原子相连的碳原子,这导致了不可重叠的镜像,称为对映体。这一特性在立体化学中起着重要作用,而立体化学是研究分子中原子的空间排列的学科。不对称碳原子的重要性可以在各种天然和合成化合物中观察到。例如,许多药物包含源自不对称碳原子的手性分子。不对称碳原子的存在可能会显著影响药物的生物活性。手性药物的不同对映体可能对身体产生不同的影响;一种可能具有治疗效果,而另一种可能有害或无效。这突显了化学家在药物开发过程中仔细考虑其化合物的立体化学的必要性。此外,不对称碳原子的存在导致了光学活性这一现象。含有不对称碳原子的化合物能够旋转平面偏振光,这一属性通过偏振仪进行测量。旋转的方向和程度可以提供关于手性物质在溶液中浓度和身份的宝贵信息。这一技术在实验室中广泛用于分析手性化合物的纯度和成分。除了在制药中的重要性,不对称碳原子在天然产物中也很常见。许多生物活性分子,包括氨基酸和糖,含有不对称碳原子。这些分子的手性通常会影响它们与生物系统(如酶和受体)的特定相互作用。例如,氨基酸L-丙氨酸含有不对称碳原子,被生物体用来构建蛋白质,而其镜像D-丙氨酸则以相同方式不参与蛋白质合成。不对称碳原子的研究不仅限于有机化学;它还扩展到生物化学和药物化学等领域。研究人员不断探索合成含有不对称碳原子的手性化合物的新方法,以增强其功效并减少药物配方中的副作用。随着科学的发展,对不对称碳原子的理解无疑将导致医学和生物技术的创新。总之,不对称碳原子是理解分子手性的基础,并在各个科学领域具有深远的影响。它们独特的性质影响分子的行为和相互作用,特别是在药物开发和生物活性方面。随着我们继续探索化学的复杂性,不对称碳原子的角色将始终是一个重要的研究领域,揭示生命在分子层面的复杂性。

相关单词

asymmetric

asymmetric详解:怎么读、什么意思、用法

carbon

carbon详解:怎么读、什么意思、用法