approximate calculation
简明释义
近似计算
英英释义
An approximate calculation is an estimation or a rough computation of a value, rather than an exact or precise figure. | 近似计算是对一个值的估算或粗略计算,而不是一个精确的数字。 |
例句
1.An approximate calculation 近似计算 of travel expenses can help you plan your trip better.
对旅行费用的近似计算 approximate calculation 可以帮助你更好地规划旅行。
2.In construction, we often rely on approximate calculation 近似计算 to estimate material costs before finalizing the budget.
在建筑中,我们常常依赖于近似计算 approximate calculation 来估算材料成本,之后再确定预算。
3.During the meeting, we made an approximate calculation 近似计算 of the project timeline.
在会议中,我们对项目时间表进行了近似计算 approximate calculation。
4.The accountant provided an approximate calculation 近似计算 of the quarterly profits based on previous data.
会计师根据之前的数据提供了一个季度利润的近似计算 approximate calculation。
5.Scientists sometimes use approximate calculation 近似计算 when dealing with complex equations.
科学家在处理复杂方程时,有时会使用近似计算 approximate calculation。
作文
In our daily lives, we often encounter situations where precise measurements are not necessary. This is where the concept of approximate calculation comes into play. 近似计算 allows us to make quick estimations that can guide decision-making without the need for exhaustive detail. For instance, when planning a budget for a project, one might not need to know the exact cost of every single item. Instead, an approximate calculation of total expenses can provide a useful framework for financial planning. 近似计算在很多情况下都能帮助我们快速获得信息,从而做出合理的判断。Consider a scenario in a classroom where a teacher wants to estimate how many apples each student will receive if they have a total of 100 apples and 30 students. Instead of dividing the apples precisely, the teacher could use an approximate calculation to determine that each student will get about three apples. This method simplifies the process and is often sufficient for practical purposes. 近似计算在这种情况下使得问题变得简单,节省了时间和精力。In scientific research, approximate calculations are also valuable. Researchers often deal with complex equations that can be difficult to solve exactly. By using approximate calculations, scientists can derive estimates that lead them to hypotheses or further experiments. For example, in physics, when calculating the trajectory of a projectile, scientists may not need the exact path but rather a close approximation to understand its behavior under various forces. This reliance on approximate calculations demonstrates how they are essential tools in advancing knowledge. 近似计算在科学实验中也发挥着重要作用,让研究者能够快速得出结论。Moreover, in fields such as engineering, approximate calculations are crucial during the design phase. Engineers often use rough estimates to assess whether a design is feasible before committing to detailed plans. For instance, when designing a bridge, engineers may perform an approximate calculation of the load it must support based on general traffic patterns rather than exact vehicle counts. This practical approach allows for flexibility and innovation in design processes. 近似计算在工程设计中也很常见,它们帮助工程师在初期阶段快速评估设计的可行性。While approximate calculations are incredibly useful, it is important to recognize their limitations. They should not replace precise calculations when accuracy is critical. For example, in medical dosing or safety assessments, relying solely on approximate calculations could lead to severe consequences. Therefore, understanding when to apply approximate calculations versus when to seek precision is a vital skill. 近似计算虽然有其优势,但在某些情况下仍需谨慎使用,以确保安全和有效性。In conclusion, approximate calculations serve as a powerful tool in various aspects of life, from budgeting and education to science and engineering. They enable us to make informed decisions quickly and effectively. However, it is crucial to balance the use of approximate calculations with the need for accuracy in situations where it matters most. Embracing this balance can enhance our problem-solving abilities and improve our overall efficiency. 近似计算在我们的生活中无处不在,正确掌握它们的使用时机将大大提高我们的工作效率和决策能力。
在我们的日常生活中,我们经常遇到不需要精确测量的情况。这就是近似计算概念发挥作用的地方。近似计算允许我们进行快速估算,这可以指导决策,而无需详尽的细节。例如,在为一个项目规划预算时,人们可能不需要知道每一项物品的确切成本。相反,对总费用的近似计算可以提供一个有用的财务规划框架。近似计算在很多情况下都能帮助我们快速获得信息,从而做出合理的判断。考虑一个课堂场景,老师想估算每个学生将收到多少个苹果,如果他们总共有100个苹果和30个学生。老师可以使用近似计算来确定每个学生大约会得到三个苹果,而不是精确地分配这些苹果。这种方法简化了过程,通常足以满足实际需求。近似计算在这种情况下使得问题变得简单,节省了时间和精力。在科学研究中,近似计算也非常有价值。研究人员经常处理复杂的方程,这些方程可能难以精确求解。通过使用近似计算,科学家可以得出估算,这将引导他们形成假设或进一步实验。例如,在物理学中,当计算抛射物的轨迹时,科学家可能不需要确切的路径,而只需接近的估计,以了解其在各种力作用下的行为。这种对近似计算的依赖表明,它们是推动知识进步的重要工具。近似计算在科学实验中也发挥着重要作用,让研究者能够快速得出结论。此外,在工程等领域,近似计算在设计阶段至关重要。工程师通常使用粗略估算来评估设计的可行性,而无需承诺详细的计划。例如,在设计桥梁时,工程师可能会根据一般交通模式进行近似计算,以评估其必须承受的负荷,而不是精确的车辆数量。这种务实的方法为设计过程提供了灵活性和创新性。近似计算在工程设计中也很常见,它们帮助工程师在初期阶段快速评估设计的可行性。虽然近似计算极具用处,但重要的是要认识到它们的局限性。在准确性至关重要的情况下,它们不应替代精确计算。例如,在医疗剂量或安全评估中,单靠近似计算可能导致严重后果。因此,理解何时应用近似计算与何时寻求精确性之间的平衡是一项至关重要的技能。近似计算虽然有其优势,但在某些情况下仍需谨慎使用,以确保安全和有效性。总之,近似计算在生活的各个方面都作为一种强大的工具,从预算、教育到科学和工程。它们使我们能够快速有效地做出明智的决策。然而,在最重要的情况下,平衡使用近似计算与对准确性的需求至关重要。拥抱这种平衡可以增强我们的解决问题能力,提高我们的整体效率。近似计算在我们的生活中无处不在,正确掌握它们的使用时机将大大提高我们的工作效率和决策能力。
相关单词