antibonding orbital
简明释义
反键轨道
英英释义
例句
1.Electrons in the antibonding orbital 反键轨道 are higher in energy than those in bonding orbitals.
位于反键轨道 反键轨道的电子能量高于位于键合轨道的电子。
2.The presence of an electron in a antibonding orbital 反键轨道 can lead to molecular instability.
位于反键轨道 反键轨道的电子可能导致分子不稳定。
3.In molecular orbital theory, electrons in a antibonding orbital 反键轨道 can weaken the bond between two atoms.
在分子轨道理论中,位于反键轨道 反键轨道的电子可能会削弱两个原子之间的键合。
4.To predict the bond order, we must consider both bonding and antibonding orbitals 反键轨道 in the molecular orbital diagram.
为了预测键级,我们必须在分子轨道图中同时考虑键合轨道和反键轨道 反键轨道。
5.When two hydrogen atoms form a molecule, their antibonding orbital 反键轨道 remains unoccupied, leading to a stable bond.
当两个氢原子形成分子时,它们的反键轨道 反键轨道保持未占据,从而形成稳定的键合。
作文
In the field of chemistry, understanding molecular structure is crucial for predicting the behavior of substances. One of the fundamental concepts in molecular orbital theory is the idea of orbitals, which are regions in an atom where electrons are likely to be found. Among these orbitals, we encounter two important types: bonding orbitals and antibonding orbitals (反键轨道). Bonding orbitals are formed when atomic orbitals combine in such a way that they enhance the electron density between two nuclei, leading to a stable bond. In contrast, antibonding orbitals are created when atomic orbitals combine destructively, resulting in a region of lower electron density between the nuclei. This phenomenon can be visualized as two waves interfering with each other; when they are in phase, they add together to form a stronger wave (bonding), while when they are out of phase, they cancel each other out (antibonding).When two atoms approach each other, their atomic orbitals overlap, allowing for the formation of both bonding and antibonding orbitals (反键轨道). The electrons that occupy bonding orbitals contribute to the stability of the molecule, while those in antibonding orbitals can destabilize it. For example, in a simple diatomic molecule like hydrogen (H2), the two hydrogen atoms come together to form a single bond. The 1s orbitals of each hydrogen atom combine to create one bonding orbital and one antibonding orbital (反键轨道). The two electrons from the hydrogen atoms occupy the bonding orbital, resulting in a stable H2 molecule.The presence of antibonding orbitals (反键轨道) plays a significant role in determining the stability and reactivity of molecules. If there are more electrons in bonding orbitals than in antibonding orbitals (反键轨道), the molecule is generally stable. However, if the number of electrons in antibonding orbitals exceeds those in bonding orbitals, the molecule becomes unstable and may readily break apart. This principle is especially important in larger and more complex molecules, where the balance of electrons in these orbitals can dictate chemical properties and reactions.Furthermore, the concept of antibonding orbitals (反键轨道) extends beyond simple diatomic molecules. In polyatomic molecules, multiple atomic orbitals combine to form a variety of bonding and antibonding orbitals (反键轨道), contributing to the overall electronic structure of the molecule. Understanding how these orbitals interact allows chemists to predict molecular geometry, polarity, and even the types of chemical reactions that may occur. For instance, the presence of antibonding orbitals (反键轨道) can influence the absorption of light, leading to color changes in compounds or the formation of excited states that are crucial for processes like photosynthesis.In summary, the concept of antibonding orbitals (反键轨道) is vital for understanding molecular interactions and stability. By recognizing how these orbitals affect the overall energy of a molecule, chemists can better predict and manipulate chemical behavior. As we continue to explore the intricacies of molecular structure, the role of antibonding orbitals (反键轨道) will undoubtedly remain a key area of focus in the study of chemistry.
在化学领域,理解分子结构对于预测物质的行为至关重要。分子轨道理论中一个基本概念是轨道,它是原子中电子可能存在的区域。在这些轨道中,我们遇到了两种重要类型:键合轨道和反键轨道。当原子轨道以增强两个原子核之间电子密度的方式结合时,就形成了键合轨道。相反,反键轨道是在原子轨道以破坏性的方式结合时产生的,导致两个原子核之间电子密度降低。这种现象可以想象成两个波的相互干涉;当它们同相时,会叠加形成更强的波(键合),而当它们反相时,则会相互抵消(反键)。当两个原子接近时,它们的原子轨道重叠,从而形成键合轨道和反键轨道。占据键合轨道的电子有助于分子的稳定性,而占据反键轨道的电子则可能使其不稳定。例如,在简单的双原子分子如氢气(H2)中,两个氢原子结合形成一个单键。每个氢原子的1s轨道结合,形成一个键合轨道和一个反键轨道。来自氢原子的两个电子占据键合轨道,从而形成稳定的H2分子。反键轨道的存在在决定分子的稳定性和反应性方面起着重要作用。如果键合轨道中的电子数多于反键轨道中的电子数,分子通常是稳定的。然而,如果反键轨道中的电子数超过了键合轨道中的电子数,分子就会变得不稳定,可能会迅速分解。这一原理在更大和更复杂的分子中尤为重要,因为这些轨道中电子的平衡可以决定化学性质和反应。此外,反键轨道的概念不仅限于简单的双原子分子。在多原子分子中,多个原子轨道结合形成各种键合和反键轨道,对分子的整体电子结构产生影响。理解这些轨道如何相互作用使化学家能够预测分子几何形状、极性,甚至可能发生的化学反应。例如,反键轨道的存在可以影响光的吸收,导致化合物的颜色变化或形成激发态,这在光合作用等过程中至关重要。总之,反键轨道的概念对于理解分子间的相互作用和稳定性至关重要。通过认识到这些轨道如何影响分子的整体能量,化学家可以更好地预测和操控化学行为。随着我们继续探索分子结构的复杂性,反键轨道的作用无疑将继续成为化学研究的重点领域。
相关单词