void coefficient of reactivity

简明释义

反应性空穴系数

英英释义

The void coefficient of reactivity is a measure of how the reactivity of a nuclear reactor changes when steam or gas bubbles (voids) form in the reactor core, typically due to boiling.

空穴反应性系数是衡量当蒸汽或气体泡(空穴)在反应堆核心中形成时,核反应堆的反应性变化程度的指标,通常由于沸腾引起。

例句

1.Understanding the void coefficient of reactivity 气孔反应性系数 helps predict reactor behavior under various conditions.

理解气孔反应性系数 气孔反应性系数有助于预测反应堆在不同条件下的行为。

2.The research focused on how the void coefficient of reactivity 气孔反应性系数 impacts the thermal hydraulic performance of the reactor.

研究集中在气孔反应性系数 气孔反应性系数如何影响反应堆的热水力性能。

3.A positive void coefficient of reactivity 气孔反应性系数 can lead to an increase in power output if coolant voids form.

如果形成冷却剂气孔,正的气孔反应性系数 气孔反应性系数可能导致功率输出增加。

4.Engineers must calculate the void coefficient of reactivity 气孔反应性系数 to ensure the safety of the reactor during operation.

工程师必须计算气孔反应性系数 气孔反应性系数以确保反应堆在运行期间的安全性。

5.In a nuclear reactor, the void coefficient of reactivity 气孔反应性系数 is crucial for understanding how changes in coolant density affect reactivity.

在核反应堆中,气孔反应性系数 气孔反应性系数 对于理解冷却剂密度变化如何影响反应性至关重要。

作文

The concept of the void coefficient of reactivity is crucial in the field of nuclear engineering and reactor physics. It refers to the change in reactivity of a nuclear reactor when there is a change in the amount of coolant or moderator present in the reactor core, specifically when the coolant is replaced by steam or gas. Understanding this concept is essential for ensuring the safety and efficiency of nuclear reactors.In a typical pressurized water reactor (PWR), water serves as both a coolant and a neutron moderator. The presence of water helps to slow down neutrons, making them more likely to cause fission reactions in the fuel. When the reactor operates normally, the coolant is in liquid form. However, if there is a loss of coolant, such as during an accident, steam can form in the core. This phenomenon leads to an increase in the void coefficient of reactivity, which can significantly affect the reactor's behavior.A positive void coefficient of reactivity indicates that as more steam or gas is produced in the reactor core, the reactivity increases. This situation is dangerous because it can lead to a rapid increase in power output, potentially causing overheating and damage to the reactor. Conversely, a negative void coefficient of reactivity means that the formation of steam or gas will decrease the reactivity, thus providing a natural feedback mechanism that helps to stabilize the reactor during transient conditions.Reactor designers strive to achieve a negative void coefficient of reactivity in their designs to enhance safety. By ensuring that any loss of coolant does not lead to an increase in reactivity, engineers can prevent scenarios that could lead to catastrophic failures. For instance, boiling water reactors (BWRs) are designed with a negative void coefficient of reactivity to ensure that any increase in steam generation will result in a decrease in reactivity, thereby maintaining safe operating conditions.The importance of the void coefficient of reactivity extends beyond just safety; it also impacts the overall efficiency of the reactor. A reactor with a well-balanced void coefficient of reactivity can operate more efficiently, maximizing energy production while minimizing the risk of accidents. This balance is critical as the world moves toward more sustainable energy sources, and nuclear power remains a significant player in the energy landscape.In conclusion, the void coefficient of reactivity is a fundamental concept in nuclear reactor design and operation. Its implications for both safety and efficiency cannot be overstated. As we continue to advance our understanding of nuclear physics and engineering, the careful consideration of the void coefficient of reactivity will remain a key factor in the development of safe and efficient nuclear energy systems. Engineers and scientists must work together to innovate and improve upon existing technologies, ensuring that nuclear power can continue to provide a reliable energy source for future generations.

“空泡反应性系数”的概念在核工程和反应堆物理学领域至关重要。它指的是当反应堆核心中的冷却剂或调节剂的量发生变化时,反应堆的反应性变化,特别是当冷却剂被蒸汽或气体替代时。理解这一概念对于确保核反应堆的安全性和效率至关重要。在典型的压水反应堆(PWR)中,水既作为冷却剂又作为中子调节剂。水的存在有助于减缓中子的速度,使其更可能导致燃料中的裂变反应。当反应堆正常运行时,冷却剂处于液态。然而,如果发生冷却剂损失,例如在事故中,核心中可能会形成蒸汽。这种现象导致“空泡反应性系数”的增加,这可能显著影响反应堆的行为。正的“空泡反应性系数”表明,随着核心中蒸汽或气体的产生增多,反应性也会增加。这种情况是危险的,因为它可能导致功率输出迅速增加,从而可能造成过热和对反应堆的损害。相反,负的“空泡反应性系数”意味着蒸汽或气体的形成会降低反应性,从而提供一种自然反馈机制,有助于在瞬态条件下稳定反应堆。反应堆设计师努力在他们的设计中实现负的“空泡反应性系数”,以增强安全性。通过确保任何冷却剂的损失不会导致反应性的增加,工程师可以防止可能导致灾难性故障的情景。例如,沸水反应堆(BWR)设计为具有负的“空泡反应性系数”,以确保任何蒸汽生成的增加将导致反应性的降低,从而维持安全的操作条件。“空泡反应性系数”的重要性不仅仅局限于安全,它还影响反应堆的整体效率。具有良好平衡的“空泡反应性系数”的反应堆可以更高效地运行,最大化能量生产,同时最小化事故风险。这种平衡至关重要,因为世界正在朝着更可持续的能源来源迈进,而核能仍然是能源格局中的重要参与者。总之,“空泡反应性系数”是核反应堆设计和运行中的一个基本概念。它对安全性和效率的影响不容小觑。随着我们继续推进对核物理和工程的理解,仔细考虑“空泡反应性系数”将始终是安全和高效核能系统开发中的关键因素。工程师和科学家必须共同努力创新和改进现有技术,确保核能能够继续为未来几代人提供可靠的能源来源。

相关单词

void

void详解:怎么读、什么意思、用法

reactivity

reactivity详解:怎么读、什么意思、用法