van der waals equation
简明释义
范德瓦耳方程
英英释义
例句
1.The van der waals equation (范德瓦尔斯方程) is essential in understanding phase transitions.
理解相变时,van der waals equation(范德瓦尔斯方程)是必不可少的。
2.The behavior of real gases can be better predicted using the van der waals equation (范德瓦尔斯方程).
使用van der waals equation(范德瓦尔斯方程)可以更好地预测真实气体的行为。
3.Chemists use the van der waals equation (范德瓦尔斯方程) to calculate the pressure of gases under non-ideal conditions.
化学家使用van der waals equation(范德瓦尔斯方程)来计算非理想条件下气体的压力。
4.In thermodynamics, the van der waals equation (范德瓦尔斯方程) accounts for molecular size and intermolecular forces.
在热力学中,van der waals equation(范德瓦尔斯方程)考虑了分子大小和分子间力。
5.To model the behavior of liquids, scientists often refer to the van der waals equation (范德瓦尔斯方程).
为了模拟液体的行为,科学家们常常参考van der waals equation(范德瓦尔斯方程)。
作文
The study of gases and their behaviors has been a fundamental aspect of physical chemistry. One of the most significant advancements in this field is the development of the van der Waals equation, which provides a more accurate description of the behavior of real gases compared to the ideal gas law. The van der Waals equation was formulated by Dutch physicist Johannes Diderik van der Waals in the late 19th century. It accounts for the volume occupied by gas molecules and the attractive forces between them, which are often neglected in the ideal gas model.In essence, the van der Waals equation modifies the ideal gas law by introducing two parameters: 'a' and 'b'. The parameter 'a' corrects for the attractive forces between gas molecules, while 'b' accounts for the finite volume occupied by the molecules themselves. This adjustment is crucial because real gases do not behave perfectly as predicted by the ideal gas law, especially under high pressure and low temperature conditions.Understanding the van der Waals equation is essential for chemists and engineers who deal with gases in various applications. For instance, in the design of chemical reactors or in the petrochemical industry, knowing how gases will behave under different conditions can lead to more efficient processes and safer operations. The van der Waals equation allows for predictions regarding phase transitions, such as when a gas condenses into a liquid, which is vital for understanding natural phenomena and industrial processes alike.Moreover, the implications of the van der Waals equation extend beyond just theoretical chemistry. It lays the groundwork for further developments in the field, including more complex equations of state that can describe the behavior of mixtures and other non-ideal systems. Scientists have built upon van der Waals' work, leading to the creation of equations like the Redlich-Kwong and Peng-Robinson equations, which provide even more precise modeling of gas behaviors.In conclusion, the van der Waals equation is a cornerstone of physical chemistry that enhances our understanding of gas behaviors in real-world scenarios. By addressing the limitations of the ideal gas law, it enables scientists and engineers to make informed decisions in their work. As we continue to explore the complexities of matter, the van der Waals equation remains a vital tool in our scientific toolkit, bridging the gap between theory and practical application. Its relevance in both academic research and industrial practices underscores the importance of this equation in the study of thermodynamics and fluid mechanics.In summary, the van der Waals equation not only enriches our comprehension of gaseous states but also serves as a foundation for future innovations in the field of chemistry. Understanding this equation is crucial for anyone involved in the study or application of gas behaviors, making it an indispensable element of chemical education and practice.
气体及其行为的研究是物理化学的一个基本方面。这个领域最重要的进展之一就是发展了范德瓦尔斯方程,它比理想气体定律提供了更准确的真实气体行为描述。范德瓦尔斯方程是由荷兰物理学家约翰尼斯·迪德里克·范德瓦尔斯在19世纪末制定的。它考虑了气体分子占据的体积和它们之间的吸引力,这在理想气体模型中通常被忽略。本质上,范德瓦尔斯方程通过引入两个参数“a”和“b”来修正理想气体定律。参数“a”修正了气体分子之间的吸引力,而“b”则考虑了分子本身占据的有限体积。这种调整至关重要,因为在高压和低温条件下,真实气体并不如理想气体法则预测的那样完美行为。理解范德瓦尔斯方程对从事各种应用的化学家和工程师至关重要。例如,在化学反应器的设计或石油化工行业,了解气体在不同条件下的行为可以导致更高效的过程和更安全的操作。范德瓦尔斯方程允许我们预测相变,例如气体何时凝结为液体,这对于理解自然现象和工业过程至关重要。此外,范德瓦尔斯方程的影响不仅限于理论化学。它为该领域的进一步发展奠定了基础,包括可以描述混合物和其他非理想系统行为的更复杂的状态方程。科学家们在范德瓦尔斯的工作基础上进行了扩展,创造了像Redlich-Kwong和Peng-Robinson等方程,这些方程提供了对气体行为更精确的建模。总之,范德瓦尔斯方程是物理化学的基石,增强了我们对真实世界场景中气体行为的理解。通过解决理想气体法则的局限性,它使科学家和工程师能够在工作中做出明智的决策。随着我们继续探索物质的复杂性,范德瓦尔斯方程在我们的科学工具箱中仍然是一个重要的工具,架起了理论与实际应用之间的桥梁。它在学术研究和工业实践中的相关性凸显了这个方程在热力学和流体力学研究中的重要性。总之,范德瓦尔斯方程不仅丰富了我们对气态状态的理解,而且作为化学领域未来创新的基础。理解这个方程对任何参与气体行为研究或应用的人来说都是至关重要的,使其成为化学教育和实践中不可或缺的元素。
相关单词