transuranium element

简明释义

超铀元素

英英释义

A transuranium element is any chemical element that has an atomic number greater than that of uranium (92), meaning it is not found naturally on Earth and is typically synthesized in laboratories or nuclear reactors.

超铀元素是指任何原子序数大于铀(92)的化学元素,意味着它们在地球上自然不存在,通常是在实验室或核反应堆中合成的。

例句

1.Some transuranium elements 超铀元素 have very short half-lives, making them difficult to study.

一些transuranium elements 超铀元素具有非常短的半衰期,使得它们难以研究。

2.The discovery of the first transuranium element 超铀元素, neptunium, marked a significant milestone in nuclear chemistry.

第一个transuranium element 超铀元素的发现,海王星,标志着核化学的一个重要里程碑。

3.Plutonium is one of the most well-known transuranium elements 超铀元素 used in nuclear reactors.

钚是最著名的transuranium elements 超铀元素之一,广泛用于核反应堆。

4.Researchers are studying the properties of various transuranium elements 超铀元素 to understand their potential applications in energy production.

研究人员正在研究各种transuranium elements 超铀元素的特性,以了解它们在能源生产中的潜在应用。

5.The synthesis of new transuranium elements 超铀元素 requires advanced particle accelerators.

合成新的transuranium elements 超铀元素需要先进的粒子加速器。

作文

The study of elements beyond uranium in the periodic table has fascinated scientists for decades. These elements, known as transuranium elements, are those that have atomic numbers greater than 92, which is the atomic number of uranium. The first transuranium element, neptunium, was discovered in 1940 by Edwin McMillan and Philip H. Abelson at the University of California, Berkeley. This marked the beginning of a new era in nuclear chemistry and physics. Transuranium elements are not found naturally in significant amounts on Earth; instead, they are typically produced synthetically in laboratories or nuclear reactors. The creation of these elements often involves bombarding lighter elements with neutrons or other particles, which can lead to a series of nuclear reactions that result in the formation of heavier atoms. For instance, plutonium, another well-known transuranium element, is created by irradiating uranium-238 with neutrons. The properties of transuranium elements can vary widely, but many of them exhibit similar characteristics to their lighter counterparts in the actinide series. They tend to be radioactive, with varying half-lives, and can undergo alpha decay or other forms of radioactive decay. This radioactivity makes them both fascinating and hazardous, presenting challenges for safe handling and disposal.Research into transuranium elements has significant implications for various fields, including energy production, medicine, and national security. For example, some transuranium elements are used as fuel in nuclear reactors, while others have potential applications in cancer treatment through targeted alpha therapy. Additionally, understanding the behavior of these elements is crucial for managing nuclear waste and developing advanced nuclear technologies.However, the study of transuranium elements is not without its controversies. The production and use of these elements raise ethical questions regarding nuclear proliferation and environmental impact. As we continue to explore the properties and applications of transuranium elements, it is essential to balance scientific advancement with responsible stewardship of our planet and its resources.In conclusion, transuranium elements represent a unique and complex area of study within the field of chemistry and physics. Their discovery has opened up new avenues for research and innovation, yet it also demands careful consideration of the implications of their use. As we look to the future, the ongoing exploration of transuranium elements will undoubtedly yield further insights into the fundamental nature of matter and the universe itself.

对周期表中铀之后的元素的研究已经吸引了科学家数十年。这些元素被称为超铀元素,它们的原子序数大于92,而铀的原子序数为92。第一个超铀元素,锕系元素,是在1940年由埃德温·麦克米伦和菲利普·H·阿贝尔森在加州大学伯克利分校发现的。这标志着核化学和物理学新时代的开始。超铀元素在地球上并没有以显著的数量存在;相反,它们通常是在实验室或核反应堆中合成的。这些元素的生成通常涉及用中子或其他粒子轰击较轻的元素,这可能导致一系列核反应,从而形成更重的原子。例如,另一种著名的超铀元素钚,是通过用中子辐照铀-238来创建的。超铀元素的性质可能差异很大,但它们中的许多表现出与其较轻的同类元素相似的特征。它们往往是放射性的,具有不同的半衰期,并且可以经历α衰变或其他形式的放射性衰变。这种放射性使它们既令人着迷又危险,给安全处理和处置带来了挑战。对超铀元素的研究在能源生产、医学和国家安全等多个领域具有重要意义。例如,一些超铀元素被用作核反应堆中的燃料,而另一些则在靶向α疗法中具有潜在应用。此外,理解这些元素的行为对于管理核废料和开发先进的核技术至关重要。然而,对超铀元素的研究并非没有争议。这些元素的生产和使用引发了关于核扩散和环境影响的伦理问题。随着我们继续探索超铀元素的性质和应用,平衡科学进步与对我们星球及其资源的负责任管理至关重要。总之,超铀元素代表了化学和物理学领域内一个独特而复杂的研究领域。它们的发现打开了研究和创新的新途径,但同时也要求我们仔细考虑其使用的影响。展望未来,对超铀元素的持续探索无疑将进一步深入我们对物质和宇宙本质的理解。