transmission electron microscope

简明释义

透射电子显微镜

英英释义

A transmission electron microscope (TEM) is a type of electron microscope that transmits a beam of electrons through a specimen to form an image, allowing for high-resolution imaging of the internal structure of the sample.

透射电子显微镜(TEM)是一种电子显微镜,通过将电子束穿透样本形成图像,从而实现对样本内部结构的高分辨率成像。

例句

1.To improve the resolution of their images, they upgraded to a high-performance transmission electron microscope.

为了提高图像的分辨率,他们升级到了高性能的透射电子显微镜

2.Using a transmission electron microscope, scientists can observe the fine details of cellular structures.

科学家们可以使用透射电子显微镜观察细胞结构的微小细节。

3.The transmission electron microscope allowed the team to visualize nanoparticles in their samples.

透射电子显微镜使团队能够可视化样品中的纳米颗粒。

4.In materials science, a transmission electron microscope is essential for studying the atomic arrangement of metals.

在材料科学中,透射电子显微镜对于研究金属的原子排列至关重要。

5.The researcher used a transmission electron microscope to analyze the structure of the virus.

研究人员使用了透射电子显微镜来分析病毒的结构。

作文

The advent of advanced imaging technologies has revolutionized the field of materials science, biology, and nanotechnology. Among these technologies, the transmission electron microscope stands out as a pivotal tool that allows scientists to observe the fine details of samples at an atomic level. The transmission electron microscope (透射电子显微镜) operates by transmitting a beam of electrons through a very thin specimen, which enables researchers to visualize structures that are otherwise invisible to light microscopes.One of the key advantages of using a transmission electron microscope is its incredible resolution. Unlike optical microscopes that are limited by the wavelength of visible light, a transmission electron microscope utilizes electrons, which have much shorter wavelengths. This property allows it to achieve magnifications of up to several million times, revealing intricate details of cellular structures, materials, and even individual atoms.In biological research, the transmission electron microscope has provided invaluable insights into the ultrastructure of cells. For example, scientists can study the arrangement of organelles within a cell, such as mitochondria and ribosomes, and understand their functions better. This knowledge is crucial for fields such as biochemistry and molecular biology, where understanding the structure-function relationship is fundamental.In materials science, the transmission electron microscope is used to investigate the properties of materials at the nanoscale. Researchers can analyze the crystallography of metals, the distribution of nanoparticles, or the defects in semiconductors. This information is essential for developing new materials with tailored properties for applications in electronics, energy storage, and more.However, working with a transmission electron microscope requires meticulous sample preparation. Samples must be extremely thin, often less than 100 nanometers, to allow electrons to pass through. This process can be challenging and time-consuming, involving techniques such as ultramicrotomy or ion milling. Despite these challenges, the results obtained from a transmission electron microscope can provide a wealth of information that is simply unattainable through other imaging methods.Furthermore, the transmission electron microscope has evolved with advancements in technology. Modern instruments are equipped with sophisticated detectors and imaging software that enhance data collection and analysis. These innovations have made it possible to perform real-time observations of dynamic processes, such as the behavior of materials under stress or the interaction of biological molecules.In conclusion, the transmission electron microscope is an indispensable tool in modern scientific research. Its ability to provide high-resolution images at the atomic level has transformed our understanding of both biological and material systems. As technology continues to advance, we can expect the transmission electron microscope to play an even more significant role in uncovering the mysteries of the microscopic world, paving the way for new discoveries and innovations that will benefit various fields of science and engineering.

先进成像技术的出现彻底改变了材料科学、生物学和纳米技术领域。在这些技术中,透射电子显微镜作为一个关键工具,使科学家能够以原子级别观察样本的细节。透射电子显微镜transmission electron microscope)通过将电子束穿透非常薄的标本来操作,这使研究人员能够可视化在光学显微镜下不可见的结构。使用透射电子显微镜的一个主要优势是其令人难以置信的分辨率。与受可见光波长限制的光学显微镜不同,透射电子显微镜利用电子,电子的波长要短得多。这一特性使其能够实现高达数百万倍的放大率,揭示细胞结构、材料甚至单个原子的复杂细节。在生物研究中,透射电子显微镜为细胞超微结构提供了宝贵的见解。例如,科学家可以研究细胞内细胞器的排列,如线粒体和核糖体,从而更好地理解它们的功能。这一知识对生物化学和分子生物学等领域至关重要,在这些领域中,理解结构与功能之间的关系是基础。在材料科学中,透射电子显微镜用于研究纳米尺度材料的性质。研究人员可以分析金属的晶体结构、纳米颗粒的分布或半导体中的缺陷。这些信息对于开发具有定制性能的新材料至关重要,应用于电子、能源存储等领域。然而,使用透射电子显微镜需要细致的样本准备。样本必须极其薄,通常小于100纳米,以便让电子通过。这个过程可能具有挑战性且耗时,涉及超微切割或离子铣削等技术。尽管面临这些挑战,从透射电子显微镜获得的结果可以提供大量信息,这是其他成像方法无法获得的。此外,随着技术的进步,透射电子显微镜也在不断发展。现代仪器配备了复杂的探测器和成像软件,增强了数据收集和分析能力。这些创新使得实时观察动态过程成为可能,例如材料在应力下的行为或生物分子之间的相互作用。总之,透射电子显微镜是现代科学研究中不可或缺的工具。它以原子级别提供高分辨率图像的能力改变了我们对生物和材料系统的理解。随着技术的不断进步,我们可以期待透射电子显微镜在揭示微观世界的奥秘方面发挥更重要的作用,为各种科学和工程领域的新发现和创新铺平道路。

相关单词

microscope

microscope详解:怎么读、什么意思、用法