townsend ionization

简明释义

唐森雪崩

英英释义

Townsend ionization refers to the process of ionization of a gas that occurs when it is subjected to a strong electric field, leading to the creation of free electrons and positive ions through collisions between neutral gas molecules and energetic electrons.

汤森德电离是指在强电场作用下,气体发生的电离过程,通过中性气体分子与高能电子之间的碰撞,产生自由电子和正离子。

例句

1.In gas discharge experiments, researchers often observe townsend ionization 汤斯通电离 as a key process in the generation of plasma.

在气体放电实验中,研究人员常常观察到townsend ionization 汤斯通电离作为等离子体生成的关键过程。

2.The efficiency of townsend ionization 汤斯通电离 can significantly affect the performance of gas-filled detectors.

townsend ionization 汤斯通电离的效率可以显著影响气体填充探测器的性能。

3.During the study of electron avalanche effects, scientists focused on the role of townsend ionization 汤斯通电离 in creating a conductive path.

在电子雪崩效应的研究中,科学家们关注townsend ionization 汤斯通电离在创建导电路径中的作用。

4.The concept of townsend ionization 汤斯通电离 is crucial for understanding how gases behave under high electric fields.

townsend ionization 汤斯通电离的概念对于理解气体在高电场下的行为至关重要。

5.In the design of ionization chambers, engineers must consider the principles of townsend ionization 汤斯通电离 to optimize detection sensitivity.

在离子化室的设计中,工程师必须考虑townsend ionization 汤斯通电离的原理,以优化检测灵敏度。

作文

The phenomenon of townsend ionization is a critical process in the field of gas discharge physics. It describes how an electron can cause additional ionization of gas molecules, leading to a chain reaction that enhances the number of charged particles in a gas. This process is named after John Sealy Townsend, who first studied it in the early 20th century. In essence, townsend ionization occurs when free electrons, generated by an external source such as radiation or a high electric field, collide with neutral gas atoms or molecules. During these collisions, the energy transferred can be sufficient to eject additional electrons from the gas atoms, creating more ions and free electrons. Understanding townsend ionization is crucial for various applications, including gas discharge lamps, particle detectors, and even in certain types of lasers. In gas discharge lamps, for instance, the initial ionization must occur for the lamp to operate effectively. The efficiency of this process can significantly influence the brightness and energy consumption of the lamp. Similarly, in particle detectors, townsend ionization helps amplify the signals produced by incoming particles, allowing for better detection and analysis.Moreover, the importance of townsend ionization extends beyond just practical applications; it also plays a vital role in understanding atmospheric phenomena. For example, during thunderstorms, the intense electric fields can lead to ionization of the air, which contributes to the formation of lightning. The processes involved in townsend ionization are fundamental in explaining how such natural events occur and their underlying mechanisms.To further illustrate the concept, consider the scenario where a high-voltage source is applied across a gas-filled tube. Initially, there may be a few free electrons present due to background radiation. When the voltage is increased, these electrons gain energy and collide with gas molecules at a higher rate. Each collision can result in the ejection of one or more additional electrons, thus leading to a rapid increase in the number of charged particles through townsend ionization. This cascading effect can quickly transform a non-conductive gas into a conductive plasma state.In summary, townsend ionization is a fundamental process that not only has significant implications in technology but also helps us understand various natural phenomena. By studying this process, scientists and engineers can improve existing technologies and develop new ones, making it a key area of research in both physics and engineering disciplines. As we continue to explore the intricacies of ionization and its effects, the contributions of townsend ionization will undoubtedly remain a focal point in advancing our knowledge and applications in numerous fields.

汤森电离现象是气体放电物理学领域中的一个关键过程。它描述了电子如何导致气体分子的额外电离,从而引发链式反应,增强气体中带电粒子的数量。这个过程以约翰·西利·汤森的名字命名,他在20世纪初首次研究了这一现象。基本上,汤森电离发生在自由电子(由辐射或高电场等外部源产生)与中性气体原子或分子碰撞时。在这些碰撞中,转移的能量可能足以从气体原子中弹出额外的电子,从而产生更多的离子和自由电子。理解汤森电离对于各种应用至关重要,包括气体放电灯、粒子探测器,甚至某些类型的激光。在气体放电灯中,例如,必须先发生初始电离,灯才会有效工作。该过程的效率可以显著影响灯的亮度和能耗。类似地,在粒子探测器中,汤森电离有助于放大由入射粒子产生的信号,从而实现更好的检测和分析。此外,汤森电离的重要性不仅限于实际应用;它在理解大气现象中也发挥着重要作用。例如,在雷暴期间,强电场会导致空气电离,这有助于闪电的形成。涉及到的汤森电离过程在解释这种自然事件的发生及其基本机制方面至关重要。为了进一步说明这一概念,考虑在充满气体的管子上施加高电压源的场景。最初,由于背景辐射,可能存在少量自由电子。当电压增加时,这些电子获得能量并以更高的速率与气体分子碰撞。每次碰撞可能导致一个或多个额外电子的弹出,从而通过汤森电离迅速增加带电粒子的数量。这种级联效应可以迅速将非导电气体转变为导电等离子体状态。总之,汤森电离是一个基本过程,不仅在技术上具有重要意义,而且帮助我们理解各种自然现象。通过研究这一过程,科学家和工程师可以改进现有技术并开发新技术,使其成为物理学和工程学科研究的关键领域。随着我们继续探索电离及其影响的复杂性,汤森电离的贡献无疑将继续成为推动我们在众多领域的知识和应用进步的焦点。

相关单词

ionization

ionization详解:怎么读、什么意思、用法