torsion angle
简明释义
扭转角
英英释义
例句
1.Chemists often adjust the torsion angle 扭转角 to optimize the interaction between ligands and receptors.
化学家们常常调整扭转角以优化配体与受体之间的相互作用。
2.During the simulation, we observed changes in the torsion angle 扭转角 that affected the overall energy of the system.
在模拟过程中,我们观察到扭转角的变化影响了系统的整体能量。
3.The study of protein structures often involves measuring the torsion angle 扭转角 between different bonds.
蛋白质结构的研究通常涉及测量不同键之间的扭转角。
4.The torsion angle 扭转角 is crucial in determining the stability of certain chemical compounds.
在确定某些化合物的稳定性时,扭转角是至关重要的。
5.In molecular modeling, the torsion angle 扭转角 can significantly affect the conformation of a molecule.
在分子建模中,扭转角可以显著影响分子的构象。
作文
In the field of chemistry and molecular biology, understanding the concept of the torsion angle is crucial for analyzing the three-dimensional structures of molecules. The torsion angle refers to the angle between two planes formed by four atoms in a molecule. Specifically, it is the angle that describes the rotation around a bond connecting two atoms, which can significantly influence the overall conformation of the molecule. This parameter plays a fundamental role in determining the physical and chemical properties of compounds, including their reactivity, stability, and interactions with other molecules.To illustrate, consider the structure of proteins, which are made up of long chains of amino acids. The sequence of amino acids determines how the protein will fold into its functional shape. Within these chains, the torsion angle between adjacent bonds can lead to various conformations, such as alpha helices or beta sheets. These structural motifs are critical for the protein's function, as they dictate how the protein interacts with other biological molecules.Moreover, the torsion angle is not just limited to proteins; it is also significant in the study of nucleic acids like DNA. The double helix structure of DNA is stabilized by specific torsion angles that allow for the proper pairing of nucleotide bases. Any alteration in these angles can lead to mutations or malfunctions in genetic processes, highlighting the importance of maintaining the correct torsion angles within biological systems.In computational chemistry, scientists often use molecular modeling techniques to predict the behavior of molecules based on their torsion angles. By adjusting these angles in simulations, researchers can explore how different conformations affect the properties of a compound. This approach is particularly useful in drug design, where optimizing the torsion angles of a potential drug molecule can enhance its efficacy and reduce side effects.Additionally, the torsion angle is a key factor in the study of polymers and materials science. The arrangement of polymer chains and the resulting torsion angles can influence the mechanical properties of materials, such as elasticity and strength. Understanding how to manipulate these angles allows engineers to design new materials with desired characteristics for various applications.In conclusion, the concept of the torsion angle is integral to many scientific disciplines, particularly in understanding molecular structures and interactions. Whether in the context of proteins, nucleic acids, or synthetic materials, the torsion angle provides valuable insights into the behavior and properties of molecules. As research continues to advance, the importance of mastering this concept will only grow, paving the way for innovations in fields ranging from medicine to materials science. Therefore, a thorough comprehension of the torsion angle is essential for anyone looking to make significant contributions to the scientific community.
在化学和分子生物学领域,理解“torsion angle”这一概念对于分析分子的三维结构至关重要。“torsion angle”指的是由分子中四个原子形成的两个平面之间的角度。具体而言,它是描述连接两个原子的键周围旋转的角度,这可以显著影响分子的整体构象。这个参数在决定化合物的物理和化学性质方面发挥着基础性作用,包括它们的反应性、稳定性以及与其他分子的相互作用。以蛋白质的结构为例,蛋白质由长链氨基酸组成。氨基酸的序列决定了蛋白质将如何折叠成其功能形状。在这些链中,相邻键之间的“torsion angle”可以导致各种构象,如α螺旋或β折叠。这些结构特征对蛋白质的功能至关重要,因为它们决定了蛋白质如何与其他生物分子相互作用。此外,“torsion angle”不仅限于蛋白质;在研究核酸如DNA时也具有重要意义。DNA的双螺旋结构由特定的“torsion angles”所稳定,从而允许核苷酸碱基的正确配对。任何这些角度的改变都可能导致突变或遗传过程中的故障,突显了在生物系统中保持正确的“torsion angles”的重要性。在计算化学中,科学家们常常使用分子建模技术,通过调整“torsion angles”来预测分子的行为。通过在模拟中调整这些角度,研究人员可以探索不同构象如何影响化合物的性质。这种方法在药物设计中尤为有用,优化潜在药物分子的“torsion angles”可以提高其效能并减少副作用。此外,“torsion angle”是聚合物和材料科学研究中的一个关键因素。聚合物链的排列及其结果“torsion angles”可以影响材料的机械性质,例如弹性和强度。理解如何操纵这些角度使工程师能够设计出具有所需特性的各种应用的新材料。总之,“torsion angle”的概念在许多科学学科中都是不可或缺的,特别是在理解分子结构和相互作用方面。无论是在蛋白质、核酸还是合成材料的背景下,“torsion angle”都提供了对分子的行为和性质的宝贵见解。随着研究的不断进展,掌握这一概念的重要性只会增加,为医学到材料科学等领域的创新铺平道路。因此,深入理解“torsion angle”对于任何希望在科学界做出重大贡献的人来说都是至关重要的。
相关单词