thorium uranium breeder
简明释义
钍 铀增殖反应堆
英英释义
例句
1.The development of a thorium uranium breeder 钍铀繁殖反应堆 could revolutionize the nuclear energy industry.
一个<阈>钍铀繁殖反应堆阈>的开发可能会彻底改变核能行业。
2.The safety features of a thorium uranium breeder 钍铀繁殖反应堆 make it an attractive option for future power plants.
<阈>钍铀繁殖反应堆阈>的安全特性使其成为未来电厂的一个有吸引力的选择。
3.The use of thorium uranium breeders 钍铀繁殖反应堆 may reduce nuclear waste significantly.
使用<阈>钍铀繁殖反应堆阈>可能会显著减少核废料。
4.Countries are investing in thorium uranium breeder 钍铀繁殖反应堆 technology to enhance energy security.
各国正在投资<阈>钍铀繁殖反应堆阈>技术以增强能源安全。
5.Researchers are exploring the efficiency of thorium uranium breeders 钍铀繁殖反应堆 in producing sustainable energy.
研究人员正在探索<阈>钍铀繁殖反应堆阈>在可持续能源生产中的效率。
作文
The world is currently facing a significant challenge in meeting its energy demands while simultaneously addressing environmental concerns. In this context, nuclear energy has emerged as a viable alternative to fossil fuels. Among the various nuclear technologies, the concept of a thorium uranium breeder is gaining attention for its potential benefits. A thorium uranium breeder refers to a specific type of nuclear reactor that utilizes thorium and uranium to generate energy. Unlike conventional reactors that rely solely on uranium, these breeders can produce more fissile material than they consume, making them an attractive option for sustainable energy production.Thorium is a naturally occurring radioactive element that is more abundant than uranium in the Earth's crust. It is considered safer and more efficient than traditional nuclear fuel sources. When thorium is used in a thorium uranium breeder, it undergoes a process called breeding, where it is converted into uranium-233, a fissile material that can sustain a nuclear reaction. This process not only generates energy but also creates additional fuel in the form of uranium-233, thereby extending the fuel supply.One of the most significant advantages of using a thorium uranium breeder is its potential for enhanced safety. Conventional nuclear reactors have faced criticism due to the risks associated with meltdowns and radioactive waste. However, thorium uranium breeders operate at lower pressures and temperatures, reducing the likelihood of catastrophic failures. Additionally, thorium-based fuels produce fewer long-lived radioactive isotopes, which simplifies waste management and decreases the burden on future generations.Another critical aspect of thorium uranium breeders is their proliferation resistance. The byproducts of thorium fuel cycles are less suitable for nuclear weapons production compared to those from uranium fuel cycles. This characteristic makes thorium uranium breeders an appealing option for countries seeking to develop nuclear energy without increasing the risk of nuclear proliferation.Despite these advantages, the widespread adoption of thorium uranium breeders faces several challenges. One primary hurdle is the current infrastructure, which is predominantly designed for uranium-based reactors. Transitioning to a thorium-based system requires significant investment in research, development, and construction of new facilities. Furthermore, while thorium has been studied for decades, practical implementation of thorium uranium breeders remains limited, with only a few experimental reactors in operation worldwide.In conclusion, the exploration of thorium uranium breeders presents a promising avenue towards a sustainable and safe energy future. By harnessing the unique properties of thorium and uranium, these reactors could provide a reliable source of energy while minimizing environmental impact and enhancing safety. As the global community continues to seek solutions to the energy crisis, investing in thorium uranium breeders may be a crucial step toward achieving a cleaner and more secure energy landscape.
世界目前面临着在满足能源需求的同时解决环境问题的重大挑战。在这种背景下,核能作为化石燃料的可行替代方案逐渐浮现。在各种核技术中,钍铀增殖反应堆的概念因其潜在的好处而受到关注。钍铀增殖反应堆指的是一种利用钍和铀来产生能量的特定类型的核反应堆。与仅依赖铀的传统反应堆不同,这些增殖反应堆能生成比消耗更多的裂变材料,因此成为可持续能源生产的吸引选项。钍是一种自然存在的放射性元素,其在地壳中的丰度超过铀。与传统核燃料源相比,钍被认为更安全、更高效。当钍在钍铀增殖反应堆中使用时,它会经历一个称为增殖的过程,在此过程中,它被转化为铀-233,这是一种可以维持核反应的裂变材料。这个过程不仅产生能量,还创造了额外的铀-233燃料,从而延长了燃料供应。使用钍铀增殖反应堆的一个重要优势是其增强的安全性。传统核反应堆由于熔毁和放射性废物相关的风险而受到批评。然而,钍铀增殖反应堆在较低的压力和温度下运行,从而降低了灾难性故障的可能性。此外,基于钍的燃料产生的长期放射性同位素较少,这简化了废物管理,并减少了对未来几代人的负担。钍铀增殖反应堆的另一个关键方面是其扩散抵抗力。钍燃料循环的副产品不太适合用于核武器生产,相较于铀燃料循环的副产品。这一特性使得钍铀增殖反应堆成为那些希望发展核能而不增加核扩散风险的国家的吸引选项。尽管有这些优势,钍铀增殖反应堆的广泛采用仍面临一些挑战。一个主要障碍是当前的基础设施主要设计用于基于铀的反应堆。过渡到基于钍的系统需要在研究、开发和新设施建设上进行大量投资。此外,虽然钍已被研究数十年,但钍铀增殖反应堆的实际实施仍然有限,目前全球只有少数实验性反应堆在运行。总之,探索钍铀增殖反应堆为可持续和安全的能源未来提供了一条有希望的途径。通过利用钍和铀的独特性质,这些反应堆可以提供可靠的能源来源,同时最小化环境影响并增强安全性。随着全球社会继续寻求能源危机的解决方案,投资于钍铀增殖反应堆可能是实现更清洁、更安全的能源格局的关键一步。
相关单词